Deutsche Zeitschrift für Onkologie 2019; 51(04): 177-185
DOI: 10.1055/a-0889-5569
Forschung
© Georg Thieme Verlag KG Stuttgart · New York

Boswelliaextrakte/Boswelliasäuren bei malignen Tumoren: Eine Übersicht

Boswellia Extracts and Boswellic Acids in Malignant Tumors: An Overview
H.P.T. Ammon
Further Information

Publication History

Publication Date:
17 September 2019 (online)

Zusammenfassung

Harze der Bäume verschiedener Boswellia-Spezies – pharmazeutisch Olibanum genannt – werden seit Jahrtausenden als Arzneimittel – auch bei Tumoren – verwendet. Seit den 1990er-Jahren häufen sich die Berichte über Antitumorwirkungen von Extrakten aus dem Harz und einigen Inhaltsstoffen, hier insbesondere von Boswelliasäuren. Präklinische Studien zeigten eine Hemmung der Proliferation, Antiangiogenese und der Ausbreitung von Metastasen sowie Induktion von Apoptose bei einer Vielzahl von Tumorzelllinien wie: Leukämie-, Glioblastom-, Meningiom-, Prostata-, Leber-, Mamma-, Kolon-, Pankreas- und Lungenkarzinomzellen.

Die Inhaltsstoffe eines Boswelia-Extraktes (BE) verhalten sich in ihrer Antitumorwirkung synergistisch zueinander und auch gegenüber Chemotherapeutika und Bestrahlung. Der Mechanismus der Antitumorwirkung beeinflusst mehrere Transduktionssignalwege und Einzelfaktoren, die mit Proliferation, Apoptose, Angiogenese und Invasion im Zusammenhang stehen. Ihre Aktivierung erfolgt in vielen Fällen durch Phosphorylierungsreaktionen. Letztere werden durch BE und -inhaltsstoffe gehemmt. Eine wichtige Rolle bei der Apoptosewirkung spielt die Aktivierung von Caspasen.

Klinische Studien liegen außer bei Hirntumoren nicht vor. Ein Vorteil von BE ist die geringe Toxizität. Dies sollte Anlass zur Durchführung klinischer Studien sein.

Abstract

Resins from trees of different Boswellic species – the pharmaceutical name is Olibanum, also called frankincense – has been used as a remedy, including the treatment of tumors. Since the last decades there are increasing reports about antitumor effects of extracts of Boswellia gum resins and some of its pharmacological active ingredients, particularly boswellic acids. Preclinical studies performed in vitro and in vivo exhibited inhibition of proliferation, angiogenesis and metastatic invasions as well as activation of apoptosis. This is true for a variety of tumor cell lines, e. g. leukemia, prostatic carcinoma, glioblastoma, meningioma, liver-, mamma-, colon-, pancreas- and lung-carcinomas. Several ingredients of Olibanum showed synergistic anti-tumor activity among each other, but also towards chemotherapeutics and irradiation. The mechanism of action concerns a variety of signal transduction pathways related to proliferation, angiogenesis and invasion of metastases as well as activation of caspases. These signal transductions include P13K-Akt-STAT3-Erk1/2-Akt1/mTor- and Wnt/β-Catenin-pathways. Most signal transductions are activated through phosphorylation reactions. These are inhibited by Boswellic extracts and their active ingredients.

So far clinical studies in humans are missing except for peritumoral brain edema. Advantage is little toxicity which should encourage clinical trials.

 
  • Literatur

  • 1 Ammon HPT, Mack T, Singh GB. et al. Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudate of Boswellia serrata. Planta Med 1991; 57: 203-207
  • 2 Safayhi H, Mack T, Sabieraj J. et al. Boswellic acids: novel, specific nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 1992; 261: 1143-1146
  • 3 Gupta I, Parihar A, Malhotra P. et al. Effects of Boswellia serrata gum resin in patients with ulcerative colitis. Eur J Med Res 1997; 2: 37-43
  • 4 Gupta I, Gupta V, Parihar A, Gupta S, Lüdtke R, Safayhi H, Ammon HP. Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a double-blind, placebo-controlled, 6-week clinical study. Eur J Med Res 1998; 3: 511-514
  • 5 Gupta I, Parihar A, Malhorta P. et al. Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med 2001; 67: 391-395
  • 6 Ammon HPT. Boswellic acids and their role in chronic inflammatory diseases. Adv Exp Med Biol 2016; 928: 291-327
  • 7 Shehata AM, Quintanilla-Fend L, Bettio S, Singh CB, Ammon HPT. Prevention of multiple low-dose streptozotocin (MLD-STZ) diabetes in mice by an extract from gum resin of Boswellia serrata (BE). Phytomedicine 2011; 18: 1037-1044
  • 8 Shehata AM, Quintanilla-Fend L, Bettio S. et al. 11-Keto-β-boswellic acids prevent development of autoimmune reactions, insulitis and reduce hyperglycemia during induction of multiple low dose streptozotocin (MLD-STZ) diabetes in mice. Horm Metab Res 2015; 47: 463-469
  • 9 Martinez D, Lohs K, Janzen J. Weihrauch und Myrrhe. Kulturgeschichte und wirtschaftliche Bedeutung. Botanik, Chemie, Medizin. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 1989
  • 10 Wang L, Liu X, Ji X. Determination of DNA topoisomerase II activity from L1210 cells – a target for screening antitumor agents. Acta Pharmacologica Sinica 1991; 12: 108-114
  • 11 Jing Y, Nakajo S, Xia L. et al. Growth inhibition and differentiation of promyelocytic cells (HL-60) induced by BC-4, an active principle from Boswellia carterii Birdw. Chin Med Sci J 1992; 7: 12-15
  • 12 Qi Z, Zhang G, Zhu W. [Experimental study on induction of apoptosis of leukemic cells by Boswellia carterii Birdw extractive]. Hunan Yi Ke Da Xue Xue Bao 1999; 24: 23-25
  • 13 Hoernlein RF, Orlikowsky T, Zehrer C. et al. Acetyl-11-keto-beta-boswellic acid induces apoptosis in HL-60 and CCRF-CEM cells and inhibits topoisomerase I. J Pharmacol Exp Ther 1999; 288: 613-619
  • 14 Syrovets T, Büchele B, Gedig E. et al. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIα. Mol Pharmacol 2000; 58: 71-81
  • 15 Shao Y, Ho CT, Chin CK. et al. Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture. Planta Med 1998; 64: 328-331
  • 16 Hostanska K, Daum G, Saller R. et al. Cytostatic and apoptosis-inducing activity of boswellic acids toward malignant cell lines in vitro. Anticancer Res 2002; 22: 2853-2862
  • 17 Ghosh J, Myers CE. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci U S A 1998; 95: 13182-13187
  • 18 Syrovets T, Gschwend JE, Büchele B. et al. Inhibition of IκB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. J Biol Chem 2005; 280: 6170-6180
  • 19 Lu M, Xia L, Hua H, Jing Y. Acetyl-11-keto-beta-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res 2008; 68: 1180-1186
  • 20 Pang X, Yi Z, Zhang X. et al. Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 2009; 69: 5893-5900
  • 21 Schmidt C, Loos C, Jin L. et al. Acetyl-lupeolic acid inhibits Akt signaling and induces apoptosis in chemoresistant prostate cancer cells in vitro and in vivo. Oncotarget 2017; 8: 55147-55161
  • 22 Glaser T, Winter S, Groscurth P. et al. Boswellic acids and malignant glioma: Induction of apoptosis but no modulation of drug sensitivity. Br J Cancer 1999; 80: 756-765
  • 23 Schneider H, Weller M. Boswellic acid activity against glioblastoma stem-like cells. Oncol Lett 2016; 11: 4187-4192
  • 24 Li W, Liu J, Fu W. et al. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. J Exp Clin Cancer Res 2018; 37: 132. doi:10.1186/s13046-018-0805-4
  • 25 Conti S, Vexler A, Edry-Botzer L. et al. Combined acetyl-11-keto-β-boswellic acid and radiation treatment inhibited glioblastoma tumor cells. PLoS One 2018; 13: e0198627. doi:10.1371/journal.pone.0198627
  • 26 Park YS, Lee JH, Bondar J. et al. Cytotoxic action of acetyl-11keto-beta-boswellic acid (AKBA) on meningioma cells. Planta Med 2002; 68: 397-401
  • 27 Kunnumakkara AB, Nair AS, Sung B. et al. Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation and survival of multiple myeloma via the protein tyrosine phosphatase sHP-1. Mol Cancer Res 2009; 7: 118-128
  • 28 Khan MA, Singh M, Khan MS. et al. Caspase mediated synergistic effect of Boswellia serrata extract in combination with doxorubicin against human hepatocellular carcinoma. Biomed Res Int 2014; 2014: 294143. doi:10.1155/2014/294143
  • 29 Liu JJ, Nilsson A, Oredsson S. et al. Keto- and acetyl-keto-boswellic acids inhibit proliferation and induce apoptosis in Hep G2 cells via a caspase-8 dependent pathway. Int J Mol Med 2002; 10: 501-505
  • 30 Zhao W, Entschladen F, Liu H. et al. Boswellic acid acetate induces differentiation and apoptosis in highly metastatic melanoma and fibrosarcoma cells. Cancer Detect Prev 2003; 27: 67-75
  • 31 Thummuri D, Jeengar MK, Shrivastava S. et al. Boswellia ovalifoliolata abrogates ROS mediated NF-ĸB activation, causes apoptosis and chemosensitization in triple negative breast cancer cells. Environ Toxicol Pharmacol 2014; 38: 58-70
  • 32 Yazdanpanahi N, Behbahani M, Yektaeian A. Effect of Boswellia thurifera gum methanol extract on cytotoxicity and p53 gene expression in human breast cancer cell line. Iran J Pharm Res 2014; 13: 719-724
  • 33 Yuan Y, Cui SX, Wang Y. et al. Acetyl-11-keto-beta-boswellic acid (AKBA) prevents human colonic adenocarcinoma growth through modulation of multiple signaling pathways. Biochim Biophys Acta 2013; 1830: 4907-4916
  • 34 Wang D, Ge S, Bai J, Song Y. Boswellic acids exert potent anticancer effects in HCT-116 human colon cancer cells mediated via apoptosis, cell cycle arrest, cell migration inhibition and inhibition of P13K/AKT signalling pathway. J BUON 2018; 23: 340-345
  • 35 Ranjbarnejad T, Saidijam M, Moradkhani S, Najafi R. Methanolic extract of Boswellia serrata exhibits anti-cancer activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Prostaglandins Other Lipid Mediat 2017; 131: 1-8
  • 36 Chou YC, Suh JH, Wang Y. et al. Boswellia serrata resin extract alleviates azoxymethane (AOM) dextran sodium sulfate (DSS)-induced colon tumorgenesis. Mol Nutr Food Res 2017; 61 (9) DOI: 10.1002/mnfr.201600984.
  • 37 Pathania AS, Guru SK, Kumar S. et al. Interplay between cell cycle and autophagy induced by boswellic acid analog. Sci Rep 2016; 6: 33146 doi:10.1038/srep33146
  • 38 Huang G, Yang J, Zhang L. et al. Inhibitory effect of 11-carbonyl-beta-boswellic acid on non-small cell lung cancer H 446 cells. Biochem Biophys Res Comm 2018; 503: 2202-2205
  • 39 El Gaafary M, Büchele B, Syrovets T. et al. An α-acetoxy-tirucallic acid isomer inhibits Akt/mTOR signaling and induces oxidative stress in prostate cancer cells. J Pharmacol Exp Ther 2015; 352: 33-42
  • 40 Mutschler E, Geisslinger G, Kroemer HK, Menzel S, Ruth P. Arzneimittelwirkungen. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2013
  • 41 Yuan XY, Li YH, Qi ZH. et al. Effect of acetyl-11-keto-β-boswellic acid on proliferation, apoptosis and cell cycle of human acute myeloid leukemia cell line HL-60. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18: 1440-1444
  • 42 Liu YQ, Wang SK, Xu QQ. et al. Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat 3 signalling, thus suppressing chemoresistant stem cell-like properties. Acta Pharmacol Sin 2019; 40: 689-698 doi:10.1038/s41401-018-0157-9
  • 43 Moustafa EM, Thabet NM, Azab KS. Boswellic acid disables signal transduction of IL-6-STAT-3 in Ehrlich ascites tumor bearing irradiated mice. Biochem Cell Biol 2016; 94: 307-313
  • 44 Huang M, Li A, Zhao F. et al. Design, synthesis and biological evaluation of ring A modified 11-keto-boswellic acid derivates as Pin1 inhibitors with remarkable anti-prostate cancer activity. Bioorg Med Chem Lett 2018; 28: 3181-3193
  • 45 Liang YH, Li P, Zhao JX. et al. Acetyl-11-keto-β-boswellic acid and arsenic trioxide regulate the production and activities of matrix metalloproteinases in human skin fibroblasts and human leukemia cell line THP-1. Zhong XI Yi Jie He Xue Bao 2010; 8: 1060-1069
  • 46 Wang R, Wang Y, Gao Z, Qu X. The comparative study of acetyl-11-keto-beta-boswellic acid (AKBA) and aspirin in the prevention of intestinal adenomatous polyposis in APC(Min/+) mice. Drug Discov Ther 2014; 8: 25-32
  • 47 Ni X, Suhail MM, Yang Q. et al. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model. BMC complement Altern Med 2012; 12: 253. doi:10.1186/1472-6882-12-253
  • 48 Khan S, Shah BA, Wani ZA. et al. A cyano analogue of boswellic acid induces crosstalk between p53/PUMA/Bax and telomerase that stages the human papillomavirus type 18 positive HeLa cells to apoptotic death. Eur J Pharmacol 2011; 660: 241-248
  • 49 Parr C, Ali AY. Boswellia frereana suppresses HGF-mediated breast cancer cell invasion and migration through inhibition of c-Met signalling. J Transl Med 2018; 16: 281. doi:10.1186/s12967-018-1660-y
  • 50 Singh SK, Bhusari S, Singh R. et al. Effect of acetyl 11-keto-beta-boswellic acid on metastatic growth factor responsible for angiogenesis. Vascul Pharmacol 2007; 46: 333-337
  • 51 Takada Y, Ichikawa H, Badmaev V, Aggarwal BB. Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion and abolishes osteoclastogenesis by suppressing NFKB and NFKB-regulated gene expression. J Immunol 2006; 176: 3127-3140
  • 52 Park B, Sung B, Yadav VR. et al. Acetyl-11-keto-β-boswellic acid suppresses invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int J Cancer 2011; 129: 23-33
  • 53 Roy NK, Deka A, Bordoloi D. et al. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett 2016; 377: 74-86
  • 54 Khan MA, Ali R, Parveen R. et al. Pharmacological evidences for cytotoxic and antitumor properties of boswellic acids from Boswellia serrata. J Ethnopharmacol 2016; 191: 315-323
  • 55 Kumar A, Qayum A, Sharma PR. et al. Synthesis of β-boswellic acid derivatives as cytotoxic and apoptotic agents. Bioorg Med Chem Lett 2016; 26: 76-81
  • 56 Snima KS, Nair RS, Nair SV. et al. Combination of anti-diabetic drug metformin and boswellic acid nanoparticles: A novel strategy for pancreatic cancer therapy. J Biomed Nanotechnol 2015; 11: 93-104
  • 57 Csuk R, Barthel-Niesen A, Barthel A. et al. 11-Keto-boswellic acid derived amides and monodesmosidic saponins induce apoptosis in breast and cervical cancers cells. Eur J Med Chem 2015; 100: 98-105
  • 58 Satpathy R, Guru RK, Behera R. et al. Prediction of anticancer property of boswellic acid derivatives by quantitative structure activity relationship analysis and molecular docking study. J Pharm Bioallied Sci 2015; 7: 21-25
  • 59 Ravanan P, Singh SK, Rao GS. et al. Growth inhibitory, apoptotic and anti-inflammatory activities displayed by a novel modified triterpenoid cyano enone of methyl boswellates. J Biosci 2011; 36: 297-307
  • 60 Hussain H, Al-Harrasi A, Csuk R. et al. Therapeutic potential of boswellic acids: a patent review (1990-2015). Expert Opin Ther Pat 2017; 27: 81-90
  • 61 Alam N, Qayum A, Kumar A. et al. Improved efficacy of cisplatin in combination with nanoformulation of pentacyclic triterpenediol. Mater Sci Eng C Mater Biol Appl 2016; 68: 109-116
  • 62 Shen S, Xu X, Liu Z. et al. Synthesis and structure-activity relationships of boswellic acid derivatives as potent VEGFR-2 inhibitors. Bioorg Med Chem 2015; 23: 1982-1993
  • 63 Heldt RM, Syrovets T, Winking M. et al. Boswellic acids exhibit cytotoxic effects on brain tumor cells independent from 5-lipoxygenase inhibition [abstract]. Naunyn-Schmiedeberg’s Arch Pharmacol 1997; 355 (Suppl.): R15
  • 64 Streffer JR, Bitzer M, Schabet M. et al. Response of radiochemotherapy-associated cerebral edema a phytotherapeutic agent, H15. Neurology 2001; 56: 1219-1221
  • 65 Flavin DF. A Lipoxygenase inhibitor in breast cancer brain metastases. J Neurooncol 2007; 82: 91-93
  • 66 Böker DK, Winking M. Die Rolle von Boswelliasäuren in der Therapie maligner Gliome. Dtsch Ärztebl 1997; 94: B 958-B 960
  • 67 Kirste S, Treier M, Wehrle SJ. et al. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors: a prospective, randomized, placebo-controlled, double-blind pilot trial. Cancer 2011; 117: 3788-3795
  • 68 Kim HR, Kim MS, Kwon DY. et al. Boswellia serrata-induced apoptosis is related with ER stress and calcium release. Genes Nutr 2008; 2: 371-374
  • 69 Shah Ba, Kumar A, Gupta P. et al. Cytotoxic and apoptotic activities of novel amino analogues of boswellic acids. Bioorg Med Chem Lett 2007; 17: 6411-6416
  • 70 Liu JJ, Huang B, Hooi SC. Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol 2006; 148: 1099-1107
  • 71 Büchele B, Zugmaier W, Estrada A. et al. Characterization of 3 alpha-acetyl-11keto-alpha-boswellic acid, a pentacyclic triterpenoid inducing apoptosis in vitro and in vivo. Planta Med 2006; 72: 1285-1289
  • 72 Girardi B, Principi M, Pricci M. et al. Chemoprevention of inflammation-related colorectal cancer by silymarin-, acetyl-11-keto-beta-boswellic acid-, curcumin- and maltodextrin-enriched formulation in animal model. Carcinogenesis 2018; 39: 1274-1282
  • 73 Bhushan S, Kumar A, Malik F. et al. A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells. Apoptosis 2007; 12: 1911-1926
  • 74 Andersson D, Liu JJ, Nilson A, Duan RD. Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase. Anticancer Res 2003; 23: 3317-3322
  • 75 Dozmorov MG, Yang Q, Wu W. et al. Differential effects of selective frankincense (Ru Xiang) essential oil versus non-selective sandalwood (Tan Xiang) essential oil on cultured bladder cancer cells: a microarray and bioinformatics study. Chin Med 2014; 9: 18. doi:10.1186/1749-8546-9-18
  • 76 Ammon HPT. Hrsg. Weihrauch – Anwendung in der westlichen Medizin. Heidelberg: Springer; 2018