Ultraschall Med 2020; 41(06): 681-687
DOI: 10.1055/a-0874-1971
Original Article
Thieme. All rights reserved. (2020) Georg Thieme Verlag KG

Disinfection of Transvaginal Ultrasound Probes by Ultraviolet C – A clinical Evaluation of Automated and Manual Reprocessing Methods

Desinfektion transvaginaler Ultraschallsonden – klinischer Vergleich einer automatischen Technik mittels ultravioletter Strahlung und einer manuellen Wischtuchmethode
Johanna Schmitz
1   Department of Obstetrics and Gynecology, University Hospital Münster, Germany
,
Annelene Kossow
2   Department of Hygiene, University Hospital Münster, Germany
,
Kathrin Oelmeier de Murcia
1   Department of Obstetrics and Gynecology, University Hospital Münster, Germany
,
Sandra Heese
1   Department of Obstetrics and Gynecology, University Hospital Münster, Germany
,
Janina Braun
1   Department of Obstetrics and Gynecology, University Hospital Münster, Germany
,
Ute Möllmann
1   Department of Obstetrics and Gynecology, University Hospital Münster, Germany
,
Ralf Schmitz
1   Department of Obstetrics and Gynecology, University Hospital Münster, Germany
,
Mareike Möllers
1   Department of Obstetrics and Gynecology, University Hospital Münster, Germany
› Author Affiliations
Further Information

Publication History

12 October 2018

06 March 2019

Publication Date:
25 June 2019 (online)

Abstract

Purpose Since pathogens can be transmitted to patients via transvaginal ultrasound probes, it is of particular importance that cleaning and disinfection are performed adequately. This study was designed to do a qualitative comparison of a low-level disinfection technique with disinfectant-impregnated wipes and an automated disinfection technique using ultraviolet C radiation in a clinical setting.

Materials and Methods The transvaginal ultrasound probes used in two groups of 160 patients were compared in a prospective controlled study regarding the effectiveness of manual low-level disinfection (Mikrozid sensitive wipes) and automated disinfection using ultraviolet C radiation (Antigermix AS1). Microbiological samples were taken from the whole surface of the probe before and after the disinfection process.

Results Before disinfection, 98.75 % (316/320) of the samples showed bacterial contamination. After automated and manual disinfection, the contamination rates were 34.2 % (54/158, automated) and 40.5 % (64/158, disinfectant wipes) (p > 0.05). Pathogens with the potential to cause healthcare-associated infections, such as Enterococcus faecalis and Klebsiella pneumoniae, were removed completely by both techniques. Manual disinfection showed a lower contamination rate after disinfection of bacteria that usually belong to the vaginal, pharyngeal and skin flora (disinfectant wipes 10.6 %, 11/104, automated 32.5 %, 38/117) (p < 0.001).

Conclusion For the clinical routine, automated disinfection with ultraviolet C is a promising technique for transvaginal ultrasound probes because of the simple handling and time efficiency. In our study, this method was completely effective against nosocomial pathogens. However, the study didn’t show any significant difference in terms of effectiveness compared to low-level wipe disinfection.

Zusammenfassung

Ziel Da Krankheitserreger über transvaginale Ultraschallsonden auf Patientinnen übertragen werden können, ist eine adäquate Reinigungs- und Desinfektionstechnik von besonderer Wichtigkeit. Ziel dieser Studie war der qualitative und klinische Vergleich einer herkömmlichen Wischtuchdesinfektion mit einer automatischen Desinfektion durch ultraviolette Strahlung.

Material und Methode 2 Gruppen à 160 Patientinnen wurden in einer prospektiven, kontrollierten Studie hinsichtlich der Effektivität der manuellen low-level-Wischtuchdesinfektion (Mikrozid sensitive wipes) im Gegensatz zur automatischen Desinfektion mit ultravioletter Strahlung (Antigermix AS1) für transvaginale Ultraschallsonden untersucht. Dafür wurden mikrobiologische Abstriche von der gesamten Sonden-Oberfläche vor und nach Desinfektion genommen.

Ergebnisse Vor Desinfektion wurde auf 98,75 % (316/320) der Abstriche bakterielles Wachstum nachgewiesen. Nach der Desinfektion ließ sich bei 34,2 % (automatische Desinfektion, 54/158) und 40,5 % (Wischtuchdesinfektion, 64/158) noch bakterielles Wachstum nachweisen (p > 0,05). Erreger, die zu nosokomialen Infektionen führen können, wie beispielsweise Enterococcus faecalis und Klebsiella pneumoniae, wurden durch beide Techniken komplett entfernt. Gegen Keime der Vaginal-, Rachen- und Hautflora zeigte die Wischtuchdesinfektion eine niedrigere Kontaminationsrate von 10,6 % (11/104) (automatische Desinfektion 32,5 %, 38/117) (p < 0,001).

Schlussfolgerung Die automatische Desinfektion von vaginalen Ultraschallsonden mit UV-C-Strahlung ist aufgrund einfacher Handhabung und Zeiteffizienz eine erfolgversprechende Methode für den klinischen Alltag. Nosokomiale Pathogene wurden in unserer Studie durch die Desinfektion vollständig entfernt, allerdings konnte kein signifikanter Unterschied bezüglich der Wirksamkeit im Vergleich zur Wischtuchdesinfektion festgestellt werden.

 
  • Literature

  • 1 Abramowicz JS, Evans DH, Fowlkes JB. et al. Guidelines for Cleaning Transvaginal Ultrasound Transducers Between Patients. Ultrasound in medicine & biology 2017; 43: 1076-1079 . doi:10.1016/j.ultrasmedbio.2017.01.002
  • 2 American Institute of Ultrasound in Medicine. Guidelines for Cleaning and Preparing External- and Internal-Use Ultrasound Probes Between Patients, Safe Handling, and Use of Ultrasound Coupling Gel. 2017 http://www.aium.org/officialstatements/57 (31.05.2018)
  • 3 Amis S, Ruddy M, Kibbler CC. et al. Assessment of condoms as probe covers for transvaginal sonography. Journal of clinical ultrasound JCU 2000; 28: 295-298
  • 4 Becker B, Bischoff B, Brill FHH. et al. Virucidal efficacy of a sonicated hydrogen peroxide system (trophon EPR) following European and German test methods. GMS hygiene and infection control 2017; 12: Doc02 . doi:10.3205/dgkh000287
  • 5 Biyikli NK, Alpay H, Ozek E. et al. Neonatal urinary tract infections: Analysis of the patients and recurrences. Pediatrics international official journal of the Japan Pediatric Society 2004; 46: 21-25 . doi:10.1111/j.1442-200X.2004.01837.x
  • 6 Bloc S, Mercadal L, Garnier T. et al. Evaluation of a New Disinfection Method for Ultrasound Probes Used for Regional Anesthesia. Journal of Ultrasound in Medicine 2011; 30: 785-788 . doi:10.7863/jum.2011.30.6.785
  • 7 Buescher DL, Möllers M, Falkenberg MK. et al. Disinfection of transvaginal ultrasound probes in a clinical setting: Comparative performance of automated and manual reprocessing methods. Ultrasound in obstetrics & gynecology the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 2016; 47: 646-651 . doi:10.1002/uog.15771
  • 8 Bundesinstitut für Arzneimittel und Medizinprodukte. Aufbereitung von Ultraschallsonden zur Anwendung in der Gynäkologie: Referenz-Nr.: 4306/05. 2005 http://www.bfarm.de/SharedDocs/Risikoinformationen/Medizinprodukte/DE/ultraschallsonden_1.html (31.05.2018)
  • 9 Canadian Standard Association (CSA). Professional Practice Guidelines and Policy Statements for Canadian Sonography. 2008 http://www.sonographycanada.ca/Apps/Sites-Management/FileDownload/DataDownload/46650/SC_ProfPractice%20Eng%20Rev%2003Feb2017%20final/pdf/1/1033 (31.05.2018)
  • 10 Casalegno JS, Le Bail Carval K, Eibach D. et al. High risk HPV contamination of endocavity vaginal ultrasound probes: An underestimated route of nosocomial infection?. PloS one 2012; 7: e48137 . doi:10.1371/journal.pone.0048137
  • 11 Gaillot O, Maruéjouls C, Abachin E. et al. Nosocomial outbreak of Klebsiella pneumoniae producing SHV-5 extended-spectrum beta-lactamase, originating from a contaminated ultrasonography coupling gel. Journal of clinical microbiology 1998; 36: 1357-1360
  • 12 Germitec IsS. Antigermix Characteristics. http://www.germitec.com/antigermix/antigermix-characteristics.html (31.05.2018)
  • 13 Germitec IsS. Operating Mode: Germitec – The optimal disinfection of ultrasound probes between each patient. http://www.germitec.com/antigermix/operating-mode.html (31.05.2018)
  • 14 Government of Western Australia, Department of Health. Prevention of cross infection in diagnostic ultrasound: Operational Directive 2012. http://www.health.wa.gov.au/circularsnew/pdfs/12913.pdf (31.05.2018)
  • 15 Hignett M, Claman P. High rates of perforation are found in endovaginal ultrasound probe covers before and after oocyte retrieval for in vitro fertilization-embryo transfer. Journal of assisted reproduction and genetics 1995; 12: 606-609
  • 16 Kac G, Gueneret M, Rodi A. et al. Evaluation of a new disinfection procedure for ultrasound probes using ultraviolet light. The Journal of hospital infection 2007; 65: 163-168 . doi:10.1016/j.jhin.2006.10.008
  • 17 Kac G, Podglajen I, Si-Mohamed A. et al. Evaluation of ultraviolet C for disinfection of endocavitary ultrasound transducers persistently contaminated despite probe covers. Infection control and hospital epidemiology 2010; 31: 165-170 . doi:10.1086/649794
  • 18 Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Anforderungen an die Hygiene bei der Aufbereitung von Medizinprodukten. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (RKI) und des Bundesinstitutes für Arzneimittel und Medizinprodukte (BfArM). Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 2012; 55: 1244-1310 . doi:10.1007/s00103-012-1548-6
  • 19 Milki AA, Fisch JD. Vaginal ultrasound probe cover leakage: Implications for patient care. Fertility and sterility 1998; 69: 409-411
  • 20 Müller T, Martiny H, Merz E. et al. DEGUM-Empfehlungen zur Hygiene in Sonografie und Endosonografie. Ultraschall in der Medizin (Stuttgart, Germany 1980) 2018; DOI: 10.1055/s-0044-102006.
  • 21 M'Zali F, Bounizra C, Leroy S. et al. Persistence of microbial contamination on transvaginal ultrasound probes despite low-level disinfection procedure. PloS one 2014; 9: e93368 . doi:10.1371/journal.pone.0093368
  • 22 Ngu A, McNally G, Patel D. et al. Reducing transmission risk through HLD infection of transvaginal ultrasound transducer handles. Infection control and hospital epidemiology 2015; 36: 581-584 . doi:10.1017/ice.2015.12
  • 23 Ohara T, Itoh Y, Itoh K. Ultrasound instruments as possible vectors of staphylococcal infection. The Journal of hospital infection 1998; 40: 73-77
  • 24 Olshtain-Pops K, Block C, Temper V. et al. An outbreak of achromobacter xylosoxidans associated with ultrasound gel used during transrectal ultrasound guided prostate biopsy. The Journal of urology 2011; 185: 144-147 . doi:10.1016/j.juro.2010.08.093
  • 25 Robert-Koch-Institut (RKI). Epidemiologisches Bulletin 21/2005: Zur Aufbereitung von transvaginalen Ultraschallsonden.
  • 26 Rooks VJ, Yancey MK, Elg SA. et al. Comparison of probe sheaths for endovaginal sonography. Obstetrics and gynecology 1996; 87: 27-29
  • 27 Schülke & Mayr GmbH. mikrozid sensitive wipes: Gebrauchsfertige Desinfektionstücher zur reinigenden Desinfektion empfindlicher Flächen und sensibler Medizinprodukte. 2017 https://www.schuelke.com/de-de/produkte/mikrozid-sensitive-wipes.php (31.05.2018)
  • 28 Softić I, Tahirović H, Di Ciommo V. et al. Bacterial sepsis in neonates: Single centre study in a Neonatal intensive care unit in Bosnia and Herzegovina. Acta medica academica 2017; 46: 7-15 . doi:10.5644/ama2006-124.181
  • 29 Storment JM, Monga M, Blanco JD. Ineffectiveness of latex condoms in preventing contamination of the transvaginal ultrasound transducer head. Southern medical journal 1997; 90: 206-208
  • 30 Westerway SC, Basseal JM, Brockway A. et al. Potential Infection Control Risks Associated with Ultrasound Equipment – A Bacterial Perspective. Ultrasound in medicine & biology 2017; 43: 421-426 . doi:10.1016/j.ultrasmedbio.2016.09.004