Zeitschrift für Orthomolekulare Medizin 2019; 17(01): 10-16
DOI: 10.1055/a-0861-4498
Wissen
© Georg Thieme Verlag KG Stuttgart · New York

Cholesterin – Baustein oder Risikofaktor?

Hans-Peter Friedrichsen
Further Information

Publication History

Publication Date:
08 April 2019 (online)

Zusammenfassung

Cholesterin ist lebenswichtiger Baustein von Membranen und Ausgangspunkt vieler Syntheseleistungen des Körpers. Ein komplexes Regulationssystem sorgt für die Aufrechterhaltung der Cholesterinbalance im Körper. Sowohl Cholesterinmangel als auch erhöhte Werte beeinträchtigen die Gesundheit. Während der gesamten Lebensdauer ist Cholesterin von Bedeutung für Aufbau, Reparatur und ungestörte Funktion des Gehirns. Störungen des Metabolismus im Gehirn zählen zu den ursächlichen Faktoren neurodegenerativer Erkrankungen. Der lange Zeit propagierte direkte kausale Zusammenhang zwischen hoher Cholesterinaufnahme z. B. aus Eiern bzw. hohem LDL-Blutspiegel und kardiovaskulären Erkrankungen konnte in wissenschaftlichen Studien nicht zweifelsfrei nachgewiesen werden. Der steigende Einsatz von Statinen zur ungezielten Cholesterinsenkung ist somit nicht begründbar.

 
  • Literatur

  • 1 USDA. United States. Department of Agriculture. National Nutrient Database for Standard Reference. Release 1 April 2018
  • 2 McNamara DJ. The Fifty Year Rehabilitation of the Egg. Nutrients 2015; 7: 8716-8722
  • 3 Zeisel SH, Niculescu MD. Perinatal choline influences brain structure and function. Nutr Rev 2006; 64: 197-203
  • 4 Kannel WB, Castelli WP, Gordon T, McNamara PM. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann Intern Med 1971; 74: 1-12
  • 5 Dawber TR, Nickerson RJ, Brand FN, Pool J. Eggs, serum cholesterol, and coronary heart disease. Am J Clin Nutr 1982; 36: 617-625
  • 6 Bechthold A, Boeing H, Schwedhelm C. et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2017: 1-20
  • 7 Kritchevsky SB. A review of scientific research and recommendations regarding eggs. J Am Coll Nutr 2004; 23 (Suppl. 6): 596S-600S
  • 8 Xu L, Lam TH, Jiang CQ. et al. Egg consumption and the risk of cardiovascular disease and all-cause mortality: Guangzhou Biobank Cohort Study and meta-analyses. Eur J Nutr 2018 doi: 10.1007/s00394-018-1692-3. [Epub ahead of print]
  • 9 Terasaka N, Wang N, Yvan-Charvet L, Tall AR. High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc Natl Acad Sci USA 2007; 104: 15093-15098
  • 10 Alphonse PA, Jones PJ. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids 2016; 51: 519-536
  • 11 Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annu Rev Biochem 2018; 87: 1.1-1.25
  • 12 Berger S, Raman G, Vishwanathan R. et al. Dietary cholesterol and cardiovascular disease: A systematic review and meta-analysis. Am J Clin Nutr 2015; 102: 276-294
  • 13 Sharpe LJ, Brown AJ. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem 2013; 288: 18707-18715
  • 14 Quintão E, Grundy SM, Ahrens EH Jr. Effects of dietary cholesterol on the regulation of total body cholesterol in man. J Lipid Res 1971; 12: 233-247
  • 15 Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol 2009; 29: 431-438
  • 16 Tsimikas S. et al. LDL isolated from Greek subjects on a typical diet or from American subjects on an oleate-supplemented diet induces less monocyte chemotaxis and adhesion when exposed to oxidative stress. Arterioscler Thromb Vasc Biol 1999; 19: 122-130
  • 17 Turpeinen AM. A high linoleic acid diet increases oxidative stress in vivo and affects nitric oxide metabolism in humans. Prostaglandins Leukot Essent Fatty Acids 1998; 59 (03) : 229-233
  • 18 Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 2004; 25: 947-970
  • 19 Azhar S, Reaven E. Scavenger receptor class BI and selective cholesterylester uptake: partners in the regulation of steroidogenesis. Mol Cell Endocrinol 2002; 195: 1-26
  • 20 Mellon SH, Vaudry H. Biosynthesis of neurosteroids and regulation of their synthesis. Int Rev Neurobiol 2001; 46: 33-78
  • 21 Björkhem I, Meaney S, Fogelman AM. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004; 24: 806-815
  • 22 Goritz C, Mauch DH, Pfrieger FW. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 2005; 29: 190-201
  • 23 Linetti A, Fratangeli A, Taverna E. et al. Cholesterol reduction impairs exocytosis of synaptic vesicles. J Cell Sci 2010; 123: 595-605
  • 24 Dietschy JM, Turley SD. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 2004; 45: 1375-1397
  • 25 Pfenninger KH. Plasma membrane expansion: a neuron’s Herculean task. Nat Rev Neurosci 2009; 10: 251-261
  • 26 Quan G, Xie C, Dietschy JM, Turley SD. Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain Res Dev Brain Res 2003; 146: 87-98
  • 27 Morell P, Jurevics H. Origin of cholesterol in myelin. Neurochemical Research 1996; 21: 463-470
  • 28 Saher G, Brügger B, Lappe-Siefke C. et al. High cholesterol level is essential for myelin membrane growth. Nature Neuroscience 2005; 8: 468-475
  • 29 Panzenboeck U, Balazs Z, Sovic A. et al. ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood – brain barrier constituted of porcine brain capillary endothelial cells. J Biol Chem 2002; 277: 42781-42789
  • 30 Numakawa T, Suzuki S, Kumamaru E. et al. BDNF function and intracellular signaling in neurons. Histol Histopathol 2010; 25: 237-258
  • 31 Björkhem I, Heverin M, Leoni V. et al. Oxysterols and Alzheimer’s disease. Acta Neurol Scand 2006; 114: 43-49
  • 32 Lahiri DK. Apolipoprotein E as a target for developing new therapeutics for Alzheimer’s disease based on studies from protein, RNA, and regulatory region of the gene. J Mol Neurosci 2004; 23: 225-233
  • 33 Block RC, Dorsey ER, Beck CA. et al. Altered cholesterol and fatty acid metabolism in Huntington disease. J Clin Lipidol 2010; 4: 17-23
  • 34 Di Paolo G, Kim TW. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 2011; 12: 284-296
  • 35 Corder EH, Saunders AM, Strittmatter WJ. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 921-923
  • 36 Schmechel DE, Saunders AM, Strittmatter WJ. et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci 1993; 90: 9649-9653
  • 37 Xiong H, Callaghan D, Jones A. et al. Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and A-beta production. Neurobiol Dis 2008; 29: 422-437
  • 38 Cutler RG, Kelly J, Storie K. et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 2004; 101: 2070-2075
  • 39 Yu E, Hu FB. Dairy Products, Dairy Fatty Acids, and the Prevention of Cardiometabolic Disease: A Review of Recent Evidence. Curr Atheroscler Rep 2018; 20: 24
  • 40 Wu JH, Zheng M, Catterall E. et al. Contribution of Trans-Fatty Acid Intake to Coronary Heart Disease Burden in Australia: A Modelling Study. Nutrients 2017; 9: 77
  • 41 Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N. Oxidized low-density lipoprotein. Methods Mol Biol 2010; 610: 403-417