RSS-Feed abonnieren
DOI: 10.1055/a-0838-5633
Einfluss der Selektiven Retinatherapie (SRT) auf inflammatorische Zellmediatoren des subretinalen Raums
Effect of Selective Retina Therapy (SRT) on the Inflammatory Microenvironment of the Subretinal SpacePublikationsverlauf
eingereicht 28. Juni 2018
akzeptiert 14. Dezember 2018
Publikationsdatum:
02. Mai 2019 (online)
Zusammenfassung
Hintergrund Ziel der Studie war es den Einfluss der Selektiven Retinatherapie (SRT) auf die Ausschüttung inflammatorischer Zellmediatoren, wie dem Komplementfaktor-3 (CC3), Tumor Growth Factor-beta2 (TGF-β2), Tumor Necrosis Factor-alpha (TNF-α) und Interferon-gamma (IFN-γ) in einem porcinen Organkulturmodell zu untersuchen.
Material und Methoden Porcine Organkulturexplantate aus retinalem Pigmentepithel (RPE), Bruch-Membran und Choroidea wurden mit 2 gepulsten Lasersystemen (SRTYLF und SRTYAG) behandelt (Nd : YLF, λ = 527 nm, Pulsdauer 1,7 µs und Nd : YAG, Wellenlänge 532 nm, Pulsdauer 2,4 – 3 µs). Es wurden 30 Pulse bei einer Repetitionsrate von 100 Hz und einer Spotgröße von 200 × 200 µm appliziert. Es wurde mit einer Energiedichte von 140 mJ/cm² pro Puls (auf der RPE-Zelltodschwelle) und 180 mJ/cm² pro Puls (über der RPE-Zelltodschwelle) behandelt. Die Explantate wurden in modifizierten Ussing-Kammern kultiviert und die Zellvitalität mittels Calcein-AM-Färbung untersucht. Die Sekretion und Expression der Zellmediatoren wurde mittels ELISA bzw. im Western Blot analysiert.
Ergebnisse Vier Tage nach SRT wurde die Regeneration der RPE-Zellen im Bereich der Läsion beobachtet. Ein Tag nach SRT mit 140 mJ/cm² pro Puls zeigte sich eine Reduktion der basolateralen CC3-Sekretion. Nach der Behandlung mit 180 mJ/cm² pro Puls wurde nach 4 Tagen eine verminderte Sekretion von IFN-γ beobachtet.
Schlussfolgerung Die SRT führt zu keiner Induktion der untersuchten proinflammatorischen Zytokine in vitro.
Abstract
Purpose To investigate the effect of Selective Retina Therapy (SRT) on inflammatory key factors such as complement factor-C3 (CC3), tumor growth factor-beta2 (TGF-β2), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ).
Materials and Methods Porcine RPE-Bruchʼs membrane-choroid explants were irradiated with two SRT laser systems, SRTYLF and SRTYAG (Nd : YLF laser, wave length 527 nm, pulse duration 1.7 µs and Nd : YAG laser, wave length 532 nm, pulse duration 2.4 – 3 µs). Laser irradiation was performed on a spot size of 200 × 200 µm, 30 pulses, with a repetition rate of 100 Hz, and a radiant exposure of 140 (threshold RPE death) and 180 mJ/cm2 per pulse (above threshold RPE death). Explants were cultivated in modified Ussing chambers and culture viability was assessed by calcein-AM cell staining. Secretion of inflammatory factors was analyzed by ELISA. Protein expression of tissue explants was assessed by Western blot.
Results Regeneration of RPE was observed after 4 days. One day after SRT with 140 mJ/cm2 per pulse the secretion of basal CC3 decreased in ELISA. Following 180 mJ/cm2 radiant exposure, the level of IFN-γ decreased at day 4.
Conclusion SRT does not induce the release of the pro-inflammatory factors analyzed in this in-vitro study.
-
Literatur
- 1 Schrader WF. [Age-related macular degeneration: a socioeconomic time bomb in our aging society]. Ophthalmologe 2006; 103: 742-748
- 2 Williams R, Airey M, Baxter H. et al. Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye (Lond) 2004; 18: 963-983
- 3 Ehrlich R, Harris A, Ciulla TA. et al. Diabetic macular oedema: physical, physiological and molecular factors contribute to this pathological process. Acta Ophthalmol (Copenh) 2010; 88: 279-291
- 4 Anderson DH, Radeke MJ, Gallo NB. et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 2010; 29: 95-112
- 5 Hageman GS, Anderson DH, Johnson LV. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 2005; 102: 7227-7232
- 6 Crabb JW, Miyagi M, Gu X. et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 2002; 99: 14682-14687
- 7 Klettner A. [Age-related macular degeneration – biology and treatment]. Med Monatsschr Pharm 2015; 38: 258-264
- 8 Cherepanoff S, McMenamin P, Gillies MC. et al. Bruchʼs membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 2010; 94: 918-925
- 9 Funk M, Schmidinger G, Maar N. et al. Angiogenic and inflammatory markers in the intraocular fluid of eyes with diabetic macular edema and influence of therapy with bevacizumab. Retina 2010; 30: 1412-1419
- 10 Funatsu H, Yamashita H, Ikeda T. et al. Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology 2003; 110: 1690-1696
- 11 Schmidt-Erfurth U, Chong V, Loewenstein A. et al. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol 2014; 98: 1144-1167
- 12 CATT Research Group. Martin DF, Maguire MG. et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 2011; 364: 1897-1908
- 13 Lavinsky D, Wang J, Huie P. et al. Nondamaging retinal laser therapy: rationale and applications to the macula. Invest Ophthalmol Vis Sci 2016; 57: 2488-2500
- 14 Lavinsky D, Palanker D. Nondamaging photothermal therapy for the retina: initial clinical experience with chronic central serous retinopathy. Retina 2015; 35: 213-222
- 15 Roider J. Selektive Retina Therapie – SRT. Ophthalmologe 2006; 103: 837-838
- 16 Roider J, Brinkmann R, Wirbelauer C. et al. Retinal sparing by selective retinal pigment epithelial photocoagulation. Arch Ophthalmol 1999; 117: 1028-1034
- 17 Brinkmann R, Hüttmann G, Rögener J. et al. Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen. Lasers Surg Med 2000; 27: 451-464
- 18 Richert E, Koinzer S, Tode J. et al. Release of different cell mediators during retinal pigment epithelium regeneration following selective retina therapy. Invest Ophthalmol Vis Sci 2018; 59: 1323-1331
- 19 Elsner H, Pörksen E, Klatt C. et al. Selective retina therapy in patients with central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2006; 244: 1638-1645
- 20 Elsner H, Klatt C, Liew SHM. et al. [Selective retina therapy in patients with diabetic maculopathy]. Ophthalmologe 2006; 103: 856-860
- 21 Detrick B, Hooks JJ. Immune regulation in the retina. Immunol Res 2010; 47: 153-161
- 22 Sramek C, Mackanos M, Spitler R. et al. Non-damaging retinal phototherapy: dynamic range of heat shock protein expression. Invest Ophthalmol Vis Sci 2011; 52: 1780-1787
- 23 Koinzer S, Schlott K, Ptaszynski L. et al. Temperature-controlled retinal photocoagulation – a step toward automated laser treatment. Invest Ophthalmol Vis Sci 2012; 53: 3605-3614
- 24 Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005; 85: 845-881
- 25 Ach T, Huisingh C, McGwin G. et al. Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2014; 55: 4832-4841
- 26 Kaldarar-Pedotti S. [Mitotic activity of the pigment epithelium during embryonic and postembryonic development]. Adv Ophthalmol 1979; 39: 37-58
- 27 Kiilgaard JF, Prause JU, Prause M. et al. Subretinal posterior pole injury induces selective proliferation of RPE cells in the periphery in in vivo studies in pigs. Invest Ophthalmol Vis Sci 2007; 48: 355-360
- 28 Tode J, Richert E, Koinzer S. et al. Thermal stimulation of the retina reduces Bruchʼs membrane thickness in age related macular degeneration mouse models. Transl Vis Sci Technol 2018; 7: 2
- 29 Klettner A, Kauppinen A, Blasiak J. et al. Cellular and molecular mechanisms of age-related macular degeneration: from impaired autophagy to neovascularization. Int J Biochem Cell Biol 2013; 45: 1457-1467
- 30 Claudio L, Martiney JA, Brosnan CF. Ultrastructural studies of the blood-retina barrier after exposure to interleukin-1 beta or tumor necrosis factor-alpha. Lab Investig J Tech Methods Pathol 1994; 70: 850-861
- 31 Nagineni CN, Kommineni VK, William A. et al. Regulation of VEGF expression in human retinal cells by cytokines: implications for the role of inflammation in age-related macular degeneration. J Cell Physiol 2012; 227: 116-126
- 32 Ben-Mahmud BM, Chan WH, Abdulahad RM. et al. Clinical validation of a link between TNF-alpha and the glycosylation enzyme core 2 GlcNAc-T and the relationship of this link to diabetic retinopathy. Diabetologia 2006; 49: 2185-2191
- 33 Miura Y, Klettner A, Noelle B. et al. Change of morphological and functional characteristics of retinal pigment epithelium cells during cultivation of retinal pigment epithelium-choroid perfusion tissue culture. Ophthalmic Res 2010; 43: 122-133
- 34 Decker T, Stockinger S, Karaghiosoff M. et al. IFNs and STATs in innate immunity to microorganisms. J Clin Invest 2002; 109: 1271-1277
- 35 Bora PS, Sohn JH, Cruz JMC. et al. Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization. J Immunol 2005; 174: 491-497
- 36 Gerl VB, Bohl J, Pitz S. et al. Extensive deposits of complement C3d and C5b-9 in the choriocapillaris of eyes of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 2002; 43: 1104-1108
- 37 Ishida K, Yoshimura N, Yoshida M. et al. Upregulation of transforming growth factor-beta after panretinal photocoagulation. Invest Ophthalmol Vis Sci 1998; 39: 801-807
- 38 Yamamoto C, Ogata N, Yi X. et al. Immunolocalization of transforming growth factor beta during wound repair in rat retina after laser photocoagulation. Graefes Arch Clin Exp Ophthalmol 1998; 236: 41-46