Exp Clin Endocrinol Diabetes 2020; 128(11): 715-722
DOI: 10.1055/a-0829-6324
Article

Association of the PNPLA2, SCD1 and Leptin Expression with Fat Distribution in Liver and Adipose Tissue From Obese Subjects

Lucía De la Cruz-Color
1   Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México
,
Zamira Helena Hernández-Nazará
2   Instituto de Investigación de Enfermedades Crónico-Degenerativas del Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México
,
Montserrat Maldonado-González
3   Laboratorio de Investigación del Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México
,
Eliseo Navarro-Muñíz
4   División de Cirugía Nuevo Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”. Guadalajara, Jalisco, México
,
José Alfredo Domínguez-Rosales
2   Instituto de Investigación de Enfermedades Crónico-Degenerativas del Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México
,
José Rodrigo Torres-Baranda
3   Laboratorio de Investigación del Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México
,
Elizabeth del Carmen Ruelas-Cinco
3   Laboratorio de Investigación del Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México
,
Sandra Margarita Ramírez-Meza
3   Laboratorio de Investigación del Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México
,
Bertha Ruíz-Madrigal
3   Laboratorio de Investigación del Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México
› Author Affiliations

Abstract

The expansion of adipose tissue is regulated by insulin and leptin through sterol regulatory element-binding protein-1c (SREBP-1c), up-regulating lipogenesis in tissues by Stearoylcoenzyme A desaturase 1 (SCD1) enzyme, while adipose triglyceride lipase (ATGL) enzyme is key in lipolysis. The research objective was to evaluate the expression of Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1), SCD1, Patatin Like Phospholipase Domain Containing 2 (PNPLA2), and leptin (LEP) genes in hepatic-adipose tissue, and related them with the increment and distribution of fat depots of individuals without insulin resistance. Thirty-eight subjects undergoing elective cholecystectomy with liver and adipose tissue biopsies (subcutaneous-omental) are included. Tissue gene expression was assessed by qPCR and biochemical parameters determined. Individuals are classified according to the body mass index, classified as lean (control group, n=12), overweight (n=11) and obesity (n=15). Abdominal adiposity was determined by anthropometric and histopathological study of the liver. Increased SCD1 expression in omental adipose tissue (p=0.005) and PNPLA2 in liver (p=0.01) were found in the obesity group. PNPLA2 decreased expression in subcutaneous adipose tissue was significant in individuals with abdominal adiposity (p=0.017). Anthropometric parameters positively correlated with liver PNPLA2 and the expression of liver PNPLA2 with serum leptin. SCD1 increased levels may represent lipid storage activity in omental adipose tissue. Liver PNPLA2 increased expression could function as a primary compensatory event of visceral fat deposits associated to the leptin hormone related to the increase of adipose tissue.



Publication History

Received: 28 August 2018
Received: 16 November 2018

Accepted: 03 January 2019

Article published online:
12 February 2019

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 World Health Organization. Obesity. Internet: http://www.who.int/topics/obesity/en/
  • 2 Saponaro C, Gaggini M, Carli F. et al. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015; 7: 9453-9474
  • 3 Ma X, Lee P, Chisholm DJ. et al. Control of adipocyte differentiation in different fat depots; Implications for pathophysiology or therapy. Front Endocrinol (Lausanne) 2015; 6: 1-8
  • 4 Caputo M, De Rosa MC, Rescigno T. et al. Binding of polyunsaturated fatty acids to LXRα and modulation of SREBP-1 interaction with a specific SCD1 promoter element. Cell Biochem Funct 2014; 32: 637-646
  • 5 Carobbio S, Hagen RM, Lelliott CJ. et al. Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. Diabetes 2013; 62: 3697-3708
  • 6 Wang Y, Viscarra J, Kim S-J. et al. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol 2015; 16: 678-689
  • 7 Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763-770
  • 8 Cohen P, Miyazaki M, Socci ND. et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science (80- ) 2002; 297: 240-243
  • 9 Borer KT. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight. World J Diabetes 2014; 5: 606-629
  • 10 ALJohani AM, Syed DN, Ntambi JM. Insights into Stearoyl-CoA Desaturase-1 regulation of systemic metabolism. Trends Endocrinol Metab 2017; 28: 831-842
  • 11 Zimmermann R, Strauss JG, Haemmerle G. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science (80- ) 2004; 306: 1383-1386
  • 12 Zegers D, Verrijken A, Beckers S. et al. Association study of PNPLA2 gene with histological parameters of NAFLD in an obese population. Clin Res Hepatol Gastroenterol 2016; 40: 333-339
  • 13 Missaglia S, Tasca E, Angelini C. et al. Novel missense mutations in PNPLA2 causing late onset and clinical heterogeneity of neutral lipid storage disease with myopathy in three siblings. Mol Genet Metab 2015; 115: 110-117
  • 14 Expert Panel on Detection E, Adults T of HBC in, Ncep . Executive summary of the third report of the national cholesterol education program Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Jama 2001; 285: 2486-2497
  • 15 Kleiner DE, Brunt EM, Van Natta M. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41: 1313-1321
  • 16 Matthews DR, Hosker JP, Rudenski AS. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-419
  • 17 Ramírez Meza SM, Maldonado-González M, Hernández-Nazará ZH et al. Development of an effective and rapid qPCR for identifying human ChREBP α/β isoform in hepatic and adipose tissues (unpublished; manuscript in preparation).
  • 18 Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008; 3: 1101-1108
  • 19 Auguet T, Guiu-Jurado E, Berlanga A. et al. Downregulation of lipogenesis and fatty acid oxidation in the subcutaneous adipose tissue of morbidly obese women. Obesity (Silver Spring) 2014; 22: 2032-2038
  • 20 Rydén M, Jocken J, Harmelen V Van. et al. Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis. Am J Physiol Endocrinol Metab 2007; 1847-1855
  • 21 Berndt J, Kralisch S, Klöting N. et al. Adipose triglyceride lipase gene expression in human visceral obesity. Exp Clin Endocrinol Diabetes 2008; 116: 203-210
  • 22 Hurtado Del Pozo C, Vesperinas-García G, Rubio MÁ. et al. ChREBP expression in the liver, adipose tissue and differentiated preadipocytes in human obesity. Biochim Biophys Acta - Mol Cell Biol Lipids 2011; 1811: 1194-1200
  • 23 Nagashima S, Yagyu H, Takahashi N. et al. Depot-Specific Expression of Lipolytic Genes in Human Adipose Tissues. J Atheroscler Thromb 2011; 18: 190-199
  • 24 De Naeyer H, Ouwens DM, Van Nieuwenhove Y. et al. Combined gene and protein expression of hormone-sensitive lipase and adipose triglyceride lipase, mitochondrial content, and adipocyte size in subcutaneous and visceral adipose tissue of morbidly obese men. Obes Facts 2011; 4: 407-416
  • 25 Steinberg GR, Kemp BE, Watt MJ. Adipocyte triglyceride lipase expression in human obesity. 2007; 293: E958-E964
  • 26 Yao-Borengasser A, Varma V, Coker RH. et al. Adipose triglyceride lipase expression in human adipose tissue and muscle. Role in insulin resistance and response to training and pioglitazone. Metabolism 2011; 60: 1012-1020
  • 27 Bak AM, Møller AB, Vendelbo MH. et al. lean subjects before and after a 72-h fast. Am J Physiol - Endocrinol Metab 2016; 311: E224-E235
  • 28 Petridou A, Chatzinikolaou A, Avloniti A. et al. Increased triacylglycerol lipase activity in adipose tissue of lean and obese men during endurance exercise. J Clin Endocrinol Metab 2017; 102: 3945-3952
  • 29 Pardina E, Ferrer R, Rossell J. et al. Diabetic and dyslipidaemic morbidly obese exhibit more liver alterations compared with healthy morbidly obese. BBA Clin 2016; 5: 54-65
  • 30 Turpin SM, Hoy AJ, Brown RD. et al. Adipose triacylglycerol lipase is a major regulator of hepatic lipid metabolism but not insulin sensitivity in mice. Diabetologia 2011; 54: 146-156
  • 31 Torrens JM, Konieczna J, Palou M. et al. Early biomarkers identified in a rat model of a healthier phenotype based on early postnatal dietary intervention may predict the response to an obesogenic environment in adulthood. J Nutr Biochem 2014; 25: 208-218
  • 32 Schoiswohl G, Stefanovic-Racic M, Menke MN. et al. Impact of reduced ATGL-mediated adipocyte lipolysis on obesity-associated insulin resistance and inflammation in male mice. Endocrinology 2015; 156: 3610-3624
  • 33 Ong KT, Mashek MT, Bu SY. et al. Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation. FASEB J 2013; 27: 313-321
  • 34 Haemmerle G, Lass A, Zimmermann R. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science (80- ) 2006; 312: 734-737
  • 35 Jha P, Claudel T, Baghdasaryan A. et al. Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia. Hepatology 2014; 59: 858-869
  • 36 Van Pelt DW, Guth LM, Wang AY et al. Factors regulating subcutaneous adipose tissue storage, fibrosis, and inflammation may underlie low fatty acid mobilization in insulin sensitive obese adults. Am J Physiol - Endocrinol Metab 2017 ajpendo.00084.2017
  • 37 Langin D, Dicker A, Tavernier G. et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 2005; 54: 3190-3197
  • 38 Hilvo M, Salonurmi T, Havulinna AS. et al. Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia 2018; 1424-1434
  • 39 Jocken JWE, Langin D, Smit E. et al. Adipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. J Clin Endocrinol Metab 2007; 92: 2292-2299
  • 40 Pereira MJ, Skrtic S, Katsogiannos P. et al. Impaired adipose tissue lipid storage, but not altered lipolysis, contributes to elevated levels of NEFA in type 2 diabetes. Degree of hyperglycemia and adiposity are important factors. Metabolism 2016; 65: 1768-1780
  • 41 Diraison F, Dusserre E, Vidal H. et al. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol Endocrinol Metab 2002; 282: E46-E51
  • 42 Kim JB, Sarraf P, Wright M. et al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 1998; 101: 1-9
  • 43 Wang MY, Lee Y, Unger RH. Novel form of lipolysis induced by leptin. J Biol Chem 1999; 274: 17541-17544
  • 44 Ramsay TG. Porcine leptin alters insulin inhibition of lipolysis in porcine adipocytes in vitro. J Anim Sci 2001; 79: 653-657
  • 45 Rodríguez VM, Macarulla MT, Echevarría E. et al. Lipolysis induced by leptin in rat adipose tissue from different anatomical locations. Eur J Nutr 2003; 42: 149-153
  • 46 Li YC, Zheng XL, Liu BT. et al. Regulation of ATGL expression mediated by leptin in vitro in porcine adipocyte lipolysis. Mol Cell Biochem 2010; 333: 121-128
  • 47 Koltes DA, Spurlock ME, Spurlock DM. Adipose triglyceride lipase protein abundance and translocation to the lipid droplet increase during leptin-induced lipolysis in bovine adipocytes. Domest Anim Endocrinol 2017; 61: 62-76
  • 48 Mora C, Pintado C, Rubio B. et al. Central leptin regulates heart lipid content by selectively increasing PPAR β/d expression. J Endocrinol 2018; 236: 43-56
  • 49 Cheng J, Liu C, Hu K. et al. Ablation of systemic SIRT1 activity promotes nonalcoholic fatty liver disease by affecting liver-mesenteric adipose tissue fatty acid mobilization. Biochim Biophys Acta - Mol Basis Dis 2017; 1863: 2783-279
  • 50 Gaidhu MP, Anthony NM, Patel P. et al. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. AJP Cell Physiol 2010; 298: C961-C971
  • 51 Vaisse C, Halaas JL, Horvath CM. et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 1996; 14: 95-97
  • 52 Zhang W, Bu SY, Mashek MT. et al. Synopsis of the 2017 U.S. Department of Veterans Affairs/U.S. Department of Defense Clinical Practice Guideline: Management of Type 2 Diabetes Mellitus 2017; 15: 349-359
  • 53 Villena JA, Roy S, Sarkadi-Nagy E. et al. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 2004; 279: 47066-47075
  • 54 Rogowski MP, Flowers MT, Stamatikos AD. et al. SCD1 activity in muscle increases triglyceride PUFA content, exercise capacity, and PPARδ expression in mice. J Lipid Res 2013; 54: 2636-2646
  • 55 Mika A, Kaska L, Korczynska J. et al. Visceral and subcutaneous adipose tissue stearoyl-CoA desaturase-1 mRNA levels and fatty acid desaturation index positively correlate with BMI in morbidly obese women. Eur J Lipid Sci Technol 2015; 117: 926-932
  • 56 Sjögren P, Sierra-Johnson J, Gertow K. et al. Fatty acid desaturases in human adipose tissue: Relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia 2008; 51: 328-335
  • 57 Caron-Jobin M, Mauvoisin D, Michaud A. et al. Stearic acid content of abdominal adipose tissues in obese women. Nutr Diabetes 2012; 2: e23
  • 58 Kotronen A, Seppänen-Laakso T, Westerbacka J. et al. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity 2010; 18: 937-944
  • 59 Stefan N, Peter A, Cegan A. et al. Low hepatic stearoyl-CoA desaturase 1 activity is associated with fatty liver and insulin resistance in obese humans. Diabetologia 2008; 51: 648-656
  • 60 Walle P, Takkunen M, Männistö V. et al. Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity. Metabolism 2016; 65: 655-666
  • 61 García-Serrano S, Moreno-Santos I, Garrido-Sánchez L. et al. Stearoyl-CoA desaturase-1 is associated with insulin resistance in morbidly obese subjects. Mol Med 2011; 17: 273-280
  • 62 Ntambi JM, Miyazaki M, Stoehr JP. et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci 2002; 99: 11482-11486
  • 63 Paillard F, Catheline D, Duff F Le. et al. Plasma palmitoleic acid, a product of stearoyl-coA desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity. Nutr Metab Cardiovasc Dis 2008; 18: 436-440
  • 64 Alsharari ZD, Risérus U, Leander K. et al. Serum fatty acids, desaturase activities and abdominal obesity - A population-based study of 60-year old men and women. PLoS One 2017; 12: 1-15
  • 65 Chong MFF, Hodson L, Bickerton AS. et al. Parallel activation of de novo lipogenesis and stearoyl-CoA desaturase activity after 3 d of high-carbohydrate feeding. Am J Clin Nutr 2008; 87: 817-823