Exp Clin Endocrinol Diabetes 2020; 128(02): 82-88
DOI: 10.1055/a-0824-6515
Article
© Georg Thieme Verlag KG Stuttgart · New York

Association of ACE I/D Polymorphism with Risk of Diabetes in Cardiovascular Disease Patients

Misbah Hussain
1   Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
2   Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
,
Shahid Abbas
3   Faisalabad Institute of Cardiology, Faisalabad, Pakistan
,
Ahmed Bilal
4   Allied Hospital / Faisalabad Medical University, Faisalabad, Pakistan
,
Muhammad Naeem Aslam
4   Allied Hospital / Faisalabad Medical University, Faisalabad, Pakistan
,
Fazli Rabbi Awan
1   Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
2   Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
› Author Affiliations
Funding: This study was supported by the Higher Education Commission (HEC), Pakistan.
Further Information

Publication History

received 03 October 2018
revised 06 December 2018

accepted 18 December 2018

Publication Date:
14 January 2019 (online)

Abstract

Angiotensin converting enzyme (ACE), as part of renin angiotensin aldosterone system, is involved in blood pressure regulation and control several physiological functions. Insertion/Deletion (I/D) polymorphism of ACE has pronounced effects on development of metabolic diseases like diabetes, cardiovascular diseases (CVDs) and hypertension. However, association of I/D polymorphism with risk of diabetes in CVD patients is not known. The aim of present study was to check the association of ACE I/D polymorphism with risk of diabetes in subjects with CVD. For this, 531 subjects were sampled and divided into 3 groups; G1-H (healthy controls, n=117), G2-CN (cardiac patients without diabetes, n=271) and G3-CD (cardiac patients with diabetes, n=143). Genotyping of ACE I/D polymorphism was done by polymerase chain reaction. Allelic and genotypic frequencies were in Hardy Weinberg Equilibrium (χ2=0.11, p>0.05) and revealed high prevalence of I allele (55%) among all groups. However, II genotype was more common (37%) in G3-CD group. Level of glucose was also higher in subjects with II genotype than DD genotype (12.6±6.3 mmol/L vs. 9.7±5.1 mmol/L). Logistic regression analysis revealed that ACE II genotype increase the risk of diabetes in CVD patients by ~2 times [OR=1.94, CI: 1.24–3.01, p=0.03]; however, this association did not reach the significance level when adjusted for age and gender. In conclusion, ACE I/D polymorphism influence the risk of diabetes in CVD patients and ACE II increases this risk by ~2 fold.

 
  • References

  • 1 Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A. et al. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength?. World J Diabetes 2014; 5: 444. doi:10.4239/wjd.v5.i4.444
  • 2 Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014; 6: a009191. doi:10.1101/cshperspect.a009191
  • 3 Sharma JN, Narayanan P. The Kallikrein–Kinin Pathways in hypertension and diabetes. Prog Drug Res 2014; 69: 15-36
  • 4 Ferrario CM, Strawn WB. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 2006; 98: 121-128
  • 5 Hsueh WA, Wyne K. Renin-angiotensin-aldosterone system in diabetes and hypertension. J Clin Hypertens 2011; 13: 224-237
  • 6 Hayashi T, Takai S, Yamashita C. Impact of the renin-angiotensin-aldosterone-system on cardiovascular and renal complications in diabetes mellitus. Curr Vasc Pharmacol 2010; 8: 189-197
  • 7 Hussain M, Awan FR. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin Exp Hypertens 2018; 40: 344-352. doi:10.1080/10641963.2017.1377218
  • 8 Chu KY, Leung PS. Angiotensin II in type 2 diabetes mellitus. Curr Protein Pept Sci 2009; 10: 75-84
  • 9 Hubert C, Houot A-M, Corvol P. et al. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J Biol Chem 1991; 266: 15377-15383
  • 10 He Q, Fan C, Yu M. et al. Associations of ACE gene insertion/deletion polymorphism, ACE activity, and ACE mRNA expression with hypertension in a Chinese population. PLoS One 2013; 8: e75870
  • 11 Baruah S, Chaliha MS, Borah PK. et al. Insertion/Insertion genotype of angiotensin i-converting-enzyme gene predicts risk of myocardial infarction in north east india. Biochem Genet 2016; 54: 134-146. doi:10.1007/s10528-015-9706-9
  • 12 Al-Serri A, Ismael FG, Al-Bustan SA. et al. Association of the insertion allele of the common ACE gene polymorphism with type 2 diabetes mellitus among Kuwaiti cardiovascular disease patients. J Renin Angiotensin Aldosterone Syst 2015; 16: 910-916. doi:10.1177/1470320315610255
  • 13 Hussain M, Awan FR, Gujjar A. et al. A case control association study of ACE gene polymorphism (I/D) with hypertension in Punjabi population from Faisalabad, Pakistan. Clin Exp Hypertens 2018; 40: 186-191 doi:10.1080/10641963.2017.1356842
  • 14 Baroudi T, Bouhaha R, Moran-Moguel C. et al. Association of the insertion/deletion polymorphism of the angiotensin-converting enzyme gene with type 2 diabetes in two ethnic groups of Jerba Island in Tunisia. J Renin Angiotensin Aldosterone Syst 2009; 10: 35-40. doi:10.1177/1470320309102314
  • 15 Ergen HA, Hatemi H, Agachan B. et al. Angiotensin-I converting enzyme gene polymorphism in Turkish type 2 diabetic patients. Exp Mol Med 2004; 36: 345-350. doi:10.1038/emm.2004.45
  • 16 Faul F, Erdfelder E, Buchner A. et al. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 2009; 41: 1149-1160. doi:10.3758/brm.41.4.1149
  • 17 Whelton PK, Carey RM, Aronow WS. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines 2018; 71: e127-e248. doi:10.1016/j.jacc.2017.11.006
  • 18 ADA. 2. Classification and diagnosis of diabetes. Diabetes care 2015; 38: 8-16. doi:10.2337/dc15-S005
  • 19 Islam M, Awan FR, Baig SM. Development of ARMS-PCR assay for genotyping of Pro12Ala SNP of PPARG gene: A cost effective way for case–control studies of type 2 diabetes in developing countries. Molecular biology reports 2014; 41: 5585-5591
  • 20 Rigat B, Hubert C, Corvol P. et al. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1)(dipeptidyl carboxypeptidase 1). Nucleic Acids Res 1992; 20: 1433
  • 21 Wang Y, Peng W, Zhang X. et al. The association of ACE gene polymorphism with diabetic kidney disease and renoprotective efficacy of valsartan. J Renin Angiotensin Aldosterone Syst 2016; 17. doi:10.1177/1470320316666749
  • 22 Alsafar H, Hassoun A, Almazrouei S. et al. Association of angiotensin converting enzyme insertion-deletion polymorphism with hypertension in emiratis with type 2 diabetes mellitus and its interaction with obesity status. Dis Markers 2015; 2015: 536041. doi:10.1155/2015/536041
  • 23 Ramachandran V, Ismail P, Stanslas J. et al. Association of insertion/deletion polymorphism of angiotensin-converting enzyme gene with essential hypertension and type 2 diabetes mellitus in Malaysian subjects. J Renin Angiotensin Aldosterone Syst 2008; 9: 208-214. doi:10.1177/1470320308097499
  • 24 Zhou D, Ruiter R, Zhang J. et al. Angiotensin-converting enzyme I/D polymorphism is not associated with type 2 diabetes in a Chinese population. J Renin Angiotensin Aldosterone Syst 2012; 13: 372-378. doi:10.1177/1470320311435535
  • 25 Al-Saikhan FI, Abd-Elaziz MA, Ashour RH. Association between risk of type 2 diabetes mellitus and angiotensin-converting enzyme insertion/deletion gene polymorphisms in a Saudi Arabian population. Biomed Rep 2017; 7: 56-60 doi:10.3892/br.2017.920
  • 26 Singh PP, Naz I, Gilmour A. et al. Association of APOE (Hha1) and ACE (I/D) gene polymorphisms with type 2 diabetes mellitus in North West India. Diabetes Res Clin Pract 2006; 74: 95-102. doi:10.1016/j.diabres.2006.03.013
  • 27 Singh M, Singh A, Singh S. et al. Angiotensin-converting enzyme gene I/D polymorphism increases the susceptibility to hypertension and additive diseases: A study on North Indian patients. Clin Exp Hypertens 2016; 38: 305-311. doi:10.3109/10641963.2015.1107085
  • 28 Folli F, Saad M, Velloso L. et al. Crosstalk between insulin and angiotensin II signalling systems. Exp Clin Endocrinol Diabetes 1999; 107: 133-139
  • 29 Buchanan TA, Thawani H, Kades W. et al. Angiotensin II increases glucose utilization during acute hyperinsulinemia via a hemodynamic mechanism. J Clin Invest 1993; 92: 720-726. doi:10.1172/JCI116642
  • 30 Morris AD, Petrie JR, Ueda S. et al. Pressor and subpressor doses of angiotensin II increase insulin sensitivity in NIDDM: Dissociation of metabolic and blood pressure effects. Diabetes 1994; 43: 1445-1449
  • 31 Fliser D, Arnold U, Kohl B. et al. Angiotensin II enhances insulin sensitivity in healthy volunteers under euglycemic conditions. J Hypertens 1993; 11: 983-988
  • 32 Takezako T, Saku K, Zhang B. et al. Angiotensin I converting enzyme gene polymorphism and insulin resistance in patients with angina pectoris. Am J Hypertens 1999; 12: 291-297. doi:10.1016/S0895-7061(98)00263-5
  • 33 Ryan AS, Nicklas BJ, Berman DM. et al. The insertion/deletion polymorphism of the ACE gene is related to insulin sensitivity in overweight women. Diabetes Care 2001; 24: 1646-1652. doi:10.2337/diacare.24.9.1646
  • 34 Panahloo A, Andrès C, Mohamed-Ali V. et al. The insertion allele of the ACE gene I/D polymorphism: a candidate gene for insulin resistance?. Circulation 1995; 92: 3390-3393
  • 35 Alvarez-Aguilar C, Enríquez-Ramírez ML, Figueroa-Nuñez B. et al. Association between angiotensin-1 converting enzyme gene polymorphism and the metabolic syndrome in a Mexican population. Exp Mol Med 2007; 39: 327
  • 36 Zhou M-S, Schulman IH, Zeng Q. Link between the renin–angiotensin system and insulin resistance: Implications for cardiovascular disease. Vasc Med 2012; 17: 330-341
  • 37 Olivares-Reyes JA, Arellano-Plancarte A, Castillo-Hernandez JR. Angiotensin II and the development of insulin resistance: implications for diabetes. Mol Cell Endocrinol 2009; 302: 128-139
  • 38 Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep 2013; 15: 59-70
  • 39 Williams SF, Nicholas SB, Vaziri ND. et al. African Americans, hypertension and the renin angiotensin system. World J Cardiol 2014; 6: 878
  • 40 Smith LM, Yao-Borengasser A, Starks T. et al. Insulin resistance in African-American and Caucasian women: Differences in lipotoxicity, adipokines, and gene expression in adipose tissue and muscle. J Clin Endocrinol Metab 2010; 95: 4441-4448
  • 41 Rivière G, Lienhard D, Andrieu T. et al. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation. Epigenetics 2011; 6: 478-489
  • 42 Rangel M, dos Santos JC, Ortiz PHL. et al. Modification of epigenetic patterns in low birth weight children: importance of hypomethylation of the ACE gene promoter. PloS one 2014; 9: e106138
  • 43 Alegría-Torres JA, Baccarelli A, Bollati V. Epigenetics and lifestyle. Epigenomics 2011; 3: 267-277