CC BY-NC-ND 4.0 · Rofo 2019; 191(06): 522-530
DOI: 10.1055/a-0817-5645
Review
© Georg Thieme Verlag KG Stuttgart · New York

Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU): Technical Background and Overview of Current Clinical Applications (Part 1)

Magnetresonanz-gesteuerter hochintensiver fokussierter Ultraschall (MR-HIFU): Technische Aspekte und Überblick über die etablierten Applikationen (Teil 1)
Florian Siedek
Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Germany
,
Sin Yuin Yeo
Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Germany
,
Edwin Heijman
Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Germany
,
Olga Grinstein
Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Germany
,
Grischa Bratke
Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Germany
,
Carola Heneweer
Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Germany
,
Michael Puesken
Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Germany
,
Thorsten Persigehl
Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Germany
,
David Maintz
Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Germany
,
Holger Grüll
Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Germany
› Author Affiliations
Further Information

Publication History

23 May 2018

24 November 2018

Publication Date:
10 January 2019 (online)

Abstract

Background Extracorporeal high-intensity focused ultrasound (HIFU) is a promising method for the noninvasive thermal ablation of benign and malignant tissue. Current HIFU treatments are performed under ultrasound (US-HIFU) or magnetic resonance (MR-HIFU) image guidance offering integrated therapy planning, real-time control (spatial and temperature guidance) and evaluation.

Methods This review is based on publications in peer-reviewed journals addressing thermal ablation using HIFU and includes our own clinical results as well. The technical background of HIFU is explained with an emphasis on MR-HIFU applications. A brief overview of the most commonly performed CE-approved clinical applications for MR-HIFU is given.

Results Over the last decade, several HIFU-based applications have received clinical approval in various countries. In particular, MR-HIFU is now approved for the clinical treatment of uterine fibroids, palliation of bone pain, ablation of the prostate and treatment of essential tremor as a first neurological application.

Conclusion MR-HIFU is a patient-friendly noninvasive method for thermal ablation which has received clinical approval for several applications. Overall, clinical data demonstrate treatment efficacy, safety and cost efficiency.

Key Points:

  • HIFU is a promising technique for noninvasive thermal ablation of tissue.

  • HIFU is typically performed under image guidance using either diagnostic ultrasound (US-HIFU) or MRI (MR-HIFU).

  • The preferred image guidance modality depends on the application.

  • MR guidance offers improved soft-tissue contrast for treatment planning, near real-time and noninvasive temperature monitoring and post-interventional therapy evaluation.

  • MR-HIFU is CE-approved for treatment of uterine fibroids, alleviation of bone pain, prostate tissue ablation and treatment of essential tremor.

Citation Format

  • Siedek F, Yeo S, Heijman E et al. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU): Technical Background and Overview of Current Clinical Applications (Part 1). Fortschr Röntgenstr 2019; 191: 522 – 530

Zusammenfassung

Hintergrund Der extrakorporale hochintensive fokussierte Ultraschall (HIFU) ist ein vielversprechendes Verfahren zur nichtinvasiven Thermoablation gutartigen und bösartigen Gewebes. Derzeitige HIFU-Therapien nutzen Ultraschall (US-HIFU) oder MRT (MR-HIFU) zur Bildsteuerung mit der Möglichkeit zur integrierten Therapieplanung, Echtzeit-Therapiekontrolle (räumliche Orientierung und Temperatursteuerung) und Therapieevaluation.

Methode Dieser Übersichtsartikel basiert auf Publikationen aus Fachzeitschriften, die die thermale Ablation mittels HIFU thematisieren, und beinhaltet zudem eigene klinische Ergebnisse. Es wird ein kurzer Überblick über die häufigsten CE-zertifizierten klinischen Applikationen für MR-HIFU gegeben.

Ergebnisse Im Laufe des letzten Jahrzehnts erhielten zahlreiche HIFU-basierte Applikationen die Zulassung in diversen Ländern. Im Speziellen ist MR-HIFU nun zugelassen für die Therapie von Uterusmyomen, Linderung von Knochenschmerzen, der Ablation der Prostata und die Therapie des essenziellen Tremors als erste neurologische Applikationsform.

Schlussfolgerung MR-HIFU ist eine patientenfreundliche, nichtinvasive Methode zur Thermoablation, welche mittlerweile für mehrere klinische Applikationen zugelassen wurde. Insgesamt bestätigen die bisherigen klinischen Daten die Wirksamkeit und Sicherheit der Therapie sowie die Kosteneffizienz der Methode.

Kernaussagen:

  • HIFU stellt eine vielversprechende Technik zur nichtinvasiven Thermoablation von Gewebe dar.

  • HIFU wird üblicherweise unter Bildkontrolle mittels Ultraschall (US-HIFU) oder MRT (MR-HIFU) durchgeführt.

  • Die bevorzugte Bildkontrolle (US-HIFU vs. MR-HIFU) hängt von der geplanten Applikation ab.

  • MRT bietet einen höheren Weichteilkontrast zur Therapieplanung, eine nahezu in Echtzeit und nichtinvasiv erfolgende Temperaturkontrolle und eine postinterventionelle Therapieevaluation.

  • MR-HIFU ist CE-zertifiziert für die Therapie von Uterusmyomen, Linderung von Knochenschmerzen, Ablation der Prostata und Therapie des essenziellen Tremors.

 
  • References

  • 1 Wood RW, Loomis AL. The physical and biological effects of high-frequency sound-waves of great intensity. Philos Mag 1927; 4: 417-436
  • 2 Lynn JG, Zwemer RL, Chick AJ. et al. A New Method for the Generation and Use of Focused Ultrasound in Experimental Biology. J Gen Physiol 1942; 26: 179-193
  • 3 Fry WJ, Barnard JW, Fry EF. et al. Ultrasonic lesions in the mammalian central nervous system. Science 1955; 122: 517-518
  • 4 Hynynen K, Damianou C, Darkazanli A. et al. The feasibility of using MRI to monitor and guide noninvasive ultrasound surgery. Ultrasound Med Biol 1993; 19: 91-92
  • 5 Shaw A, ter Haar G. Requirements for Measurement Standards in HIFU Fields. NPL Report DQL AC015.. National Physics Laboratory 2006
  • 6 Whittingham TA. The acoustic output of diagnostic machines. In: ter Haar G, Duck FA. eds. The safe use of ultrasound in medical diagnosis. London, UK: British Medical Ultrasound Society/British Insitute of Radiology; 2000: 16-31
  • 7 Köhler MO, Mougenot C, Quesson B. et al. Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry. Medical Physics 2009; 3521-3535
  • 8 Quinn SD, Gedroyc WM. Thermal ablative treatment of uterine fibroids. Int J Hyperthermia 2015; 31: 272-279
  • 9 Trumm CG, Stahl R, Clevert DA. et al. Magnetic resonance imaging-guided focused ultrasound treatment of symptomatic uterine fibroids: impact of technology advancement on ablation volumes in 115 patients. Invest Radiol 2013; 48: 359-365
  • 10 Park MJ, Kim YS, Rhim H. et al. Safety and therapeutic efficacy of complete or near-complete ablation of symptomatic uterine fibroid tumors by MR imaging-guided high- intensity focused US therapy. J Vasc Interv Radiol 2014; 25: 231-239
  • 11 Funaki K, Fukunishi H, Funaki T. et al. Magnetic resonance-guided focused ultrasound surgery for uterine fibroids: relationship between the therapeutic effects and signal intensity of preexisting T2-weighted magnetic resonance images. Am J Obstet Gynecol 2007; 196: 184. e1 – 6
  • 12 Yeo SY, Kim Y, Lim HK. et al. Uterine fibroids: Influence of “T2-Rim sign” on immediate therapeutic responses to magnetic resonance imaging-guided high-intensity focused ultrasound ablation. Eur J Radiol 2017; 97: 21-30
  • 13 David M, Matzko M. MR-Guided Focused Ultrasound in Fibroid Treatment – Results of the 3rd Radiological-Gynecological Expert Meeting. Fortschr Röntgenstr 2017; 189: 515-518
  • 14 Fröling V, Kröncke TJ, Schreiter NF. et al. Technical eligibility for treatment of magnetic resonance-guided focused ultrasound surgery. Cardiovasc Intervent Radiol 2014; 37: 445-450
  • 15 Dobrotwir A, Pun E. Clinical 24 months experience of the first MRgFUS Unit for treatment of uterine fibroids in Australia. J Med Imaging Radiat Oncol 2012; 56: 409-416
  • 16 Ruhnke H, Eckey T, Bohlmann MK. et al. MR-guided HIFU treatment of symptomatic uterine fibroids using novel feedback-regulated volumetric ablation: effectiveness and clinical practice. Fortschr Röntgenstr 2013; 184: 983-991
  • 17 Babashov V, Palimaka S, Blackhouse G. et al. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MRgHIFU) for Treatment of Symptomatic Uterine Fibroids: An Economic Analysis. Ont Health Technol Assess Ser 2015; 15: 1-61
  • 18 Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006; 12: 6243s-6249s
  • 19 Ringe KI, Panzica M, von Falck C. Thermoablation of Bone Tumors. Fortschr Röntgenstr 2016; 188: 539-550
  • 20 Barile A, Arrigoni F, Zugaro L. et al. Minimally invasive treatments of painful bone lesions: state of the art. Med Oncol 2017; 34: 53
  • 21 Liberman B, Gianfelice D, Inbar Y. et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol 2009; 16: 140-146
  • 22 Saarto T, Janes R, Tenhunen M. et al. Palliative radiotherapy in the treatment of skeletal metastases. Eur J Pain 2002; 6: 323-330
  • 23 Huisman M, Van Den Bosch MAAJ, Wijlemans JW. et al. Effectiveness of reirradiation for painful bone metastases: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys 2012; 84: 8-14
  • 24 Maisano R, Pergolizzi S, Cascinu S. Novel therapeutic approaches to cancer patients with bone metastasis. Crit Rev Oncol Hematol 2001; 40: 239-250
  • 25 Yeo SY, Elevelt A, Donato K. et al. Bone metastasis treatment using magnetic resonance-guided high intensity focused ultrasound. Bone 2015; 81: 513-523
  • 26 Catane R, Beck A, Inbar Y. et al. MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases – preliminary clinical experience. Ann Oncol 2007; 18: 163-167
  • 27 Gianfelice D, Gupta C, Kucharczyk W. et al. Palliative treatment of painful bone metastases with MR imaging–guided focused ultrasound. Radiology 2008; 249: 355-363
  • 28 Ten Eikelder HMM, Bošnački D, Elevelt A. et al. Modelling the temperature evolution of bone under high intensity focused ultrasound. Phys Med Biol 2016; 61: 1810-1828
  • 29 Huisman M, ter Haar G, Napoli A. et al. International consensus on use of focused ultrasound for painful bone metastases: Current status and future directions. Int J Hyperthermia 2015; 31: 251-259
  • 30 Bucknor MD, Ozhinsky E, Shah R. et al. Effect of Sonication Duration and Power on Ablation Depth During MR-Guided Focused Ultrasound of Bone. J Magnet Reson Imaging 2017; 46: 1418-1422
  • 31 Hurwitz MD, Ghanouni P, Kanaev SV. et al. Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst 2014; 106: 1-9
  • 32 Napoli A, Anzidei M, Marincola BC. et al. Primary pain palliation and local tumor control in bone metastases treated with magnetic resonance-guided focused ultrasound. Invest Radiol 2013; 48: 351-358
  • 33 Yeo SY, Arias Moreno AJ, van Rietbergen B. et al. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling. J Ther Ultrasound 2015; 3: 13
  • 34 Napoli A, Bazzocchi A, Scipione R. et al. Noninvasive Therapy for Osteoid Osteoma: A Prospective Developmental Study with MR Imaging-guided High-Intensity Focused Ultrasound. Radiology 2017; 285: 186-196
  • 35 Masciocchi C, Zugaro L, Arrigoni F. et al. Radiofrequency ablation versus magnetic resonance guided focused ultrasound surgery for minimally invasive treatment of osteoid osteoma: a propensity score matching study. Eur Radiol 2016; 26: 2472-2481
  • 36 Rovella MS, Martins GL, Cavalcanti CF. et al. Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Osteoid Osteoma: A Case Series Report. Ultrasound Med Biol 2016; 42: 919-923
  • 37 Arrigoni F, Barile A, Zugaro L. et al. Intra-articular benign bone lesions treated with Magnetic Resonance-guided Focused Ultrasound (MRgFUS): imaging follow-up and clinical results. Med Oncol 2017; 34: 55
  • 38 Geiger D, Napoli A, Conchiglia A. et al. MR-guided focused ultrasound (MRgFUS) ablation for the treatment of nonspinal osteoid osteoma: a prospective multicenter evaluation. J Bone Joint Surg Am 2014; 96: 743-751
  • 39 Yarmolenko PS, Eranki A, Partanen A. et al. Technical aspects of osteoid osteoma ablation in children using MR-guided high intensity focussed ultrasound. Int J Hyperthermia 2017; 24: 1-10
  • 40 Sharma KV, Yarmolenko PS, Celik H. et al. Comparison of Noninvasive High-Intensity Focused Ultrasound with Radiofrequency Ablation of Osteoid Osteoma. J Pediatr 2017; 190: 222-228.e1
  • 41 Weeks EM, Platt MW, Gedroyc W. MRI-guided focused ultrasound (MRgFUS) to treat facet joint osteoarthritis low back pain – case series of an innovative new technique. Eur Radiol 2012; 22: 2822-2835
  • 42 Hynynen K, McDannold N, Clement G. et al. Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain – a primate study. Eur J Radiol 2006; 59: 149-156
  • 43 Alkins R, Huang Y, Pajek D. et al. Cavitation-based third ventriculostomy using MRI-guided focused ultrasound. J Neurosurg 2013; 119: 1520-1529
  • 44 Elias WJ, Huss D, Voss T. et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 2013; 369: 640-648
  • 45 Jeanmonod D, Werner B, Morel A. et al. Transcranial magnetic resonance imaging–guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus 2012; 32: E1
  • 46 Gallay MN, Moser D, Rossi F. Incisionless transcranial MR-guided focused ultrasound in essential tremor: cerebellothalamic tractotomy. J Ther Ultrasound 2016; 4: 5
  • 47 Elias WJ, Lipsman N, Ondo WG. et al. A Randomized Trial of Focused Ultrasound Thalamotomy for Essential Tremor. N Engl J Med 2016; 375: 730-739
  • 48 Hynynen K, McDannold N, Vykhodtseva N. et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001; 220: 640-646
  • 49 Marty B, Larrat B, Van Landeghem M. et al. Dynamic study of blood-brain barrier closure after its disruption using ultrasound: a quantitative analysis. J Cereb Blood Flow Metab 2012; 32: 1948-1958
  • 50 Lipsman N, Meng Y, Bethune AJ. et al. Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun 2018; 9: 2336