Kinder- und Jugendmedizin 2019; 19(01): 9-17
DOI: 10.1055/a-0807-3754
Schwerpunkt
Georg Thieme Verlag KG

Das Prader-Labhart-Willi-Syndrom (PWS)

The Prader Willi syndrome
W. Kiess
1   Universitätsklinik für Kinder und Jugendliche, Zentrum für Pädiatrische Forschung (CPL), Department für Frauen und Kindermedizin, Universität Leipzig
,
J. Gesing
1   Universitätsklinik für Kinder und Jugendliche, Zentrum für Pädiatrische Forschung (CPL), Department für Frauen und Kindermedizin, Universität Leipzig
,
A. Körner
1   Universitätsklinik für Kinder und Jugendliche, Zentrum für Pädiatrische Forschung (CPL), Department für Frauen und Kindermedizin, Universität Leipzig
,
E. Sergeyev
1   Universitätsklinik für Kinder und Jugendliche, Zentrum für Pädiatrische Forschung (CPL), Department für Frauen und Kindermedizin, Universität Leipzig
,
A. Merkenschlager
1   Universitätsklinik für Kinder und Jugendliche, Zentrum für Pädiatrische Forschung (CPL), Department für Frauen und Kindermedizin, Universität Leipzig
,
T. Kapellen
1   Universitätsklinik für Kinder und Jugendliche, Zentrum für Pädiatrische Forschung (CPL), Department für Frauen und Kindermedizin, Universität Leipzig
,
R. Pfäffle
1   Universitätsklinik für Kinder und Jugendliche, Zentrum für Pädiatrische Forschung (CPL), Department für Frauen und Kindermedizin, Universität Leipzig
› Author Affiliations
Further Information

Publication History





Publication Date:
27 February 2019 (online)

Zusammenfassung

Genetische Erkrankungen, die mit Adipositas einhergehen, sind nicht selten. Viele dieser Adipositas-Syndrome weisen ein charakteristisches Präsentationsalter, einen komplexen Phänotyp, zum Teil aber auch eine überlappende klinische Symptomatologie auf. Letztere Tatsache unterstreicht, dass bei einigen dieser Syndrome gemeinsame zelluläre Signalübertragungswege gestört und betroffen sind. Die Ursache der Adipositas ist zumeist eine gestörte Appetit- und Sättigungsregulation im Zentralnervensystem (Hypothalamus). Wenn die genetischen Hintergründe dieser Syndrome einmal komplett verstanden sind, werden neue Ursachen-bezogene Therapien verfügbar sein. Das Prader-Labhart-Willi-Syndrom (PWS) ist das häufigste Adipositas-Syndrom und wird durch einen Verlust an „Imprinted”-Genen auf dem Chromosom 15q11-13 verursacht. Die Häufigkeit des PWS beläuft sich auf ca. 1 in 30.000 Lebendgeborenen. Weitere genetische Adipositas-Syndrome sind zum Beispiel das Alström-Syndrom, das Cohen-Syndrom, die Albright’s hereditäre Osteodystrophie (Pseudohypopa-rathyreoidismus) und das Carpenter-Syndrom. Außerdem gehören das MOMO-Syndrom, das Rubinstein-Taybi-Syndrom und Deletionen auf den Chromosomen 1, 2, 6 und 9 sowie weitere genetische Syndrome zu den Adipositas-Syndromen. Im Neugeborenenalter und in der frühen Kindheit sind eine auffallende muskuläre Hypotonie, typische faziale Auffälligkeiten wie mandelförmige Augen, sowie eine helle Hautfarbe und schmale Finger und Zehen hinweisend. Im Kleinkindes- und im Schulkindalter fallen eine zunehmende Hyperphagie mit der daraus folgenden Adipositas und die kognitiven Defizite mit Sprachverzögerung und verzögertem Erreichen der Entwicklungs-Meilensteine auf. Im späten Schulalter sind neben der mentalen Retardierung Verhaltensauffälligkeiten für die Familien der Betroffenen belastend. Hypogonadismus oder eine zu früh einsetzende Pubertät mit späterem Abbrechen der Pubertätsentwicklung oder ein PWS-assoziierter Diabetes kommen häufig vor. Multidisziplinäre Therapiestrategien umfassen Physio- und Ergotherapie, Logopädie, eine bereits früh zu beginnende Wachstums-Hormontherapie, begleitende Betreuung an einem Sozialpädiatrischen Zentrum mit Zugang zu sozialmedizinischer Versorgung mit Sozialarbeit und der Mitarbeit von Psychologen und Kinder- und Jugendpsychiatern sind heute der Standard in der Betreuung von PatientInnen mit PWS und ihren Familien. Die deutsche Prader-Willi-Vereinigung ist eine Selbsthilfegruppe mit einem breiten Netzwerk von betroffenen Familien und Unterstützern. Sie bietet hervorragende Hilfsstrategien und Unterstützung für Betroffene und ihre Familien. In der hier vorliegenden kurzen Abhandlung sollen wichtige Kerndaten zum PWS für die Früherkennung und praktische Arbeit mit den Betroffenen zusammengefasst werden.

 
  • Literatur (Auswahl)

  • 1 Reed DR, Ding Y, Xu W, Cather C, Price RA. Human obesity does not segregate with the chromosomal regions of Prader-Willi, Bardet-Biedl, Cohen, Borjeson or Wilson-Turner syndromes.. Int J Obes Relat Metab Disord 1995; 19: 599-603.
  • 2 Andersen KL, Echwald SM, Larsen LH. et al. Variation of the McKusick-Kaufman gene end studies of relationships with common forms of obesity.. J Clin Endocrinol Metab 2005; 90: 225-230.
  • 3 Whittington JE, Holland AJ, Webb T. et al. Population pre-va-lence and estimated birth incidence and mortality rate for people with Prader-Willi syndrome in one UK Health Region.. J Med Genet 2001; 38: 792-798.
  • 4 Prader A, Labhart A, Willi H. Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus und Oligophrenie nach Myotonie-artigem Zustand im Neugeborenen-Alter.. Schweiz Med Wochenschr 1956; 86: 1260-1261.
  • 5 Holm VA, Cassidy SB, Butler MG. et al. Prader-Willi syndrome: consensus diagnostic criteria.. Pediatrics 1993; 91: 398-402.
  • 6 Goldstone AP. Prader-Willi syndrome: advances in its genetics, pathophysiology and treatment.. Trends Endocrinol Metab 2004; 15: 12-20.
  • 7 Burman P, Ritzen EM, Lindgren AC. Endocrine dysfunction in Prader-Willi syndrome: a review with special reference to GH.. Endocr Rev 2001; 22: 787-799.
  • 8 Nicholls RO, Kncpper JL. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes.. Annu Rev Genomics Hum Genet 2002; 2: 153-175.
  • 9 Lee S, Walker CL, Wevrick R. Prader-Willi syndrome transcripts are expressed in phenotypically significant regions of the developing mouse brain.. Gene Expr Patterns 2003; 3: 599-609.
  • 10 Kuwako K, Hosokawa A, Nishimura I. et al. Disruption of the paternal necdin gene diminishes TrkA signaling for senso-ry neuron survival.. J Neurosci 2005; 25: 7090-7099.
  • 11 Lee S, Walker CL, Karten B. et al. Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth.. Hum Mol Genet 2005; 14: 627-637.
  • 12 Muscatelli F, Abrous DN, Massacrier A. et al. Disruption of the mouse Necdin gene results in hypothalamie and behavioral altera-tions reminiscent of the human Prader-Willi syndrome.. Hum Mol Genet 2000; 9: 3101-3110.
  • 13 Ren J, Lee S, Pagliardini S. et al. Absence of Ndn, encoding the Prader-Willi syndrome-deleted gene necdin, results in congenital deficiency of central respiratory drive in neonatal mice.. J Neurosci 2003; 23: 1569-1573.
  • 14 Pagliardini S, Ren J, Wevrick R, Greer JJ. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the Prader-Willi syndrome gene necdin.. Am J Pathol 2005; 167: 175-191.
  • 15 Andrieu D, Meziane H, Marly F. et al. Sensory defects in Necdin deficient rnice result from a loss of sensory neurons correlated with-in an increase of developmental programmed cell death.. BMC Dev Biol 2006; 6: 56.
  • 16 Boer H, Holland A, Whittington T. et al. Psychotic illness in people with Prader Willi syndrome due to chromosome 15 maternal uniparental diso-my.. Lancet 2002; 359: 135-136.
  • 17 Chai JH, Locke DP, Greally JM. et al. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/ Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons.. Am J Hum Genet 2003; 73: 898-925.
  • 18 Butler MG, Bittel DC, Kibiryeva N. et al. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and rnaternal disomy.. Pediatrics 2004; 113: 565-573.
  • 19 Dudley O, Muscatelli F. Clinical evidence of intrauterine disturbance in Prader-Willi syndrome, a genetically imprinted neurodevelopmental disorder.. Early Hum Dev 2007; 83: 471-478.
  • 20 Stevenson DA, Heinemann J, Angulo M. et al. Deaths due to choking in Prader-Willi syndrome.. Am J Med Genet A 2007; 143: 484-487.
  • 21 Wharton R, Wang T, GraemeCook F. et al. Acute idiopathic gastric dilata-tion with gastric necrosis in individuals with Prader-Willi syndrome.. Am J Med Genet 1997; 73: 437-441.
  • 22 Eiholzer U. A comprehensive approach to limiting weight gain and to normalising body composition in Prader-Willi syndrome. in Eiholzer U, l’Allemand D, Zipf W. (eds) Prader-Willi syndrome as a Model for Obesity.. Basel: Karger; 2003: 211-221.
  • 23 Papavramidis ST, Kotidis EV, Gamvros O. Prader-Willi syndrome-associated obesity treated by biliopancreatic diversion with duodenal switch. Case report and literature review.. J Pediatr Surg 2006; 41: 1153-1158.
  • 24 Goldstone AP, Brynes AE, Thomas EL. et al. Bloom SR: Resting metabolic rate, plasma leptin concentrations, leptin receptor ex-pression, end adipose tissue measured by whole-body magnetic resonance imaging in women with Prader-Willi syndrome.. Am J Clin Nutr 2002; 75: 468-475.
  • 25 Goldstone AP, Thomas EL, Brynes AE. et al. Visceral adipose tissue and metabolic complications of obesity are reduced in Prader-Willi syndrome female adults: evidence for novel influences on body fat distribution.. J Clin Endocrinol Metab 2001; 86: 4330-4338.
  • 26 Goldstone AP, Unmehopa VA, Thomas EL. et al. Hypothalamic neuropeptides and regulation of fat mass in Prader-Wil-li syndrome.. In: Eiholzer U, l’Allemand D, Zipf W. (eds) Prader-Willi Syndrome as a Model for Obesity.. Basel: Karger; 2003: 31-43.
  • 27 Goldstone AP, Pattersen M, Kalingag N. et al. Fasting and post-prandial hyperghrelinemia in Prader-Willi syndrome is partially explained by hypoinsulinemia, and is not due to peptide YY 3-36 deficiency or seen in hypothalamic obesity due to craniopharyngioma.. J Clin Endocrinol Metab 2005; 90: 2681-2690.
  • 28 Kennedy L, Bittel DC, Kibiryeva N. et al. Circulating adi-ponectin levels, body composition and obesity-related variables in Prader-Willi syn-drome: comparison with obese subjects.. lnt J Obes (Lond) 2006; 30: 382-387.
  • 29 Allen DB, Carrel A. Growth hormone therapy for Prader-Willi syndrome: a critical appraisal.. J Pediatr Endocrinol Metab 2004; 17 (Suppl. 04) 1297-1306.
  • 30 Myers SE, Whitman BY, Carrel A. et al. Two years of growth hormone therapy in young children with Prader-Willi syndrome: Physical and neurodevelopmental benefits.. Am J Med Genet 2007; 143: 443-448.
  • 31 Holland AJ, Treasure J, Coskeran P. et al. Measurement of excessive appetite and metabolic changes in Pader-Willi syndrome.. Int J Obes 1993; 17: 527-532.
  • 32 Choe YH, Jin DK, Kim SE. et al. Hyperghrelinemia does not accelerate gastric emptying in Prader-Willi syndrome patients.. J Clin Endocrinol Metab 2005; 90: 3367-3370.
  • 33 Cummings DE, Clement K, Purnell JQ. et al. Elevated plasma ghrelin levels in Prader-Willi syndro-me.. Nat Med 2002; 8: 643-644.
  • 34 Choe YH, Song SY, Paik KH. et al. Increased density of ghrelin expressing cells in the gastric fundus and body in Prader-Wil-li syndrome.. J Clin Endocrinol Metab 2005; 90: 5441-5445.
  • 35 Tan TM, Vanderpump M, Khoo B. et al. Somato-statin Infusion lowers plasma ghrelin without reducing appetite in adults with Prader-Willi syndrome.. J Cli Endocrinol Metab 2004; 89: 4162-4165.
  • 36 Zipf WB, O’Dorisio TM, Cataland S, Dixon K. Pancreatic polypeptide responses to protein meal challenges in obese but otherwise normal children and obese children with Prader-Willi syndrome.. J Clin Endocrinol Metab 1983; 57: 1074-1080.
  • 37 Goldstone AP. The hypothalamus, hormones, and hunger: alterations in human obesity and illness.. Prog Brain Res 2006; 153: 57-73.
  • 38 Berntson GG, Zipf WB, O’Dorisio TM. et al. Pancreatic polypep-tide infusions reduce food intake in Prader-Willi syndrome.. Peptides 1993; 14: 497-503.
  • 39 Goldstone AP, Unmehopa UA, Bloom SR, Swaab DF. Hypo-thalamic NPY and agouti-related protein are increased in human illness but not in Prader-Willi syndrome and other obese subjects.. J Clin Endocrinol Metab 2002; 87: 927-937.
  • 40 Goldstone AP, Unmehopa UA, Swaab DF. Hypothalamic growth hormone-releasing hormone (GHRH) cell number is increased in human illness, but is not reduced in Prader-Willi syndrome or obesity (erratum in Clin Endocrinol 59, 266, 2003).. Clin Endocrinol (Oxf) 2003; 58: 743-755.
  • 41 Fronczek R, Lammers GJ, Balesar R. et al. The number of hypothalamic hypocretin (orexin) neurons is not affected in Prader-Willi Syndrome.. J Clin Endocrinol Metab 2005; 90: 5466-5470.
  • 42 Nevsimalova S, Vankova J, Siepanova I. et al. Hypocretin deficiency in Prader-Willi syndrome.. Eur J Neurol 2005; 12: 70-72.
  • 43 Swaab DF, Purba JS, Hofman MA. Alterations in the hypo-thalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome.. a study of five cases. J Clin Endocrinol Metab 1995; 80: 573-579.
  • 44 Gabreels BATE, Swaab DF, deKleijn DPV. et al. Attenuation of the polypeptide 7B2, prohormone convertase PC2, and vaso-pressin in the hypothalamus of some Prader-Willi patients: Indications for a processing defect.. J Clin Endocrinol Metab 1998; 83: 591-599.
  • 45 Swaab DF. Prader-Willi syndrome and the hypothalamus.. Acta Paediatr Suppl 1997; 423: 50-54.
  • 46 Miller T, Kranzler J, Liu Y. et al. Neurocognitive findings in Pra-der-Willi syndrome and early-onset morbid obesity.. J Pediatr 2006; 149: 192-198.
  • 47 Leonard CM, Williams CA, Nicholls RD. et al. Angelman and Prader-Willi syndrome: a magnetic resonance imaging study of differences in cerebral structure.. Am J Med Genet 1993; 46: 26-33.
  • 48 Yamada K, Matsuzawa H, Uchiyama M. et al. Brain developmental abnormalities in Prader-Willi syndrome detected by diffusion tensor imaging.. Pediatrics 2006; 118: E442-E448.
  • 49 Miller JL, Couch JA, Schmalfuss I. et al. Intracranial abnormalities detected by three-dimensional magnetic resonance imaging in Prader-Willi syndrome.. Am J Med Genet A 2007; 143: 476-483.
  • 50 Miller JL, Goldstone AP, Couch TA. et al. Pituitary abnormalities in Prader-Willi syndrome and early-onset morbid obesity.. Am J Med Genet 2008; 146A: 570-577.
  • 51 Shapira NA, Lessig Me, He GA. et al. Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRJ.. J Neurol Neurosurg Psych 2005; 76: 260-262.
  • 52 Hinton EC, Holland AJ, Gellatly MS. et al. Neural representations of hunger and satiety in Prader-Willi syndrome.. Int J Obes 2005; 30: 313-321.
  • 53 Holsen LM, Zarcone JR, Brooks WM. et al. Neural mechanisms underlying hyperphagia in Prader-Willi Syndrome.. Obesity 2006; 14: 1028-1037.
  • 54 Miller TL, James GA, Goldstone AP. et al. Enhanced activation of reward-mediating prefrontal regions in response to food stimuli in Prader-Willi syndrome.. J Neurol Neurosorg Psychiatry 2007; 78: 615-619.
  • 55 Maina EN, Webb T, Soni S. et al. Analysis of candidate imprinted genes in PWS subjects with atypical genetics: a possible inactivating mutation in the SNURF/SNRPN minimal promoter.. J Hum Genet 2007; 52: 297-307.
  • 56 Oeffner F, Korn T, Roth H. et al. Systematic screening for mutations in the human necdin gene (NDN): identification of two naturally occurring polymorphisms and association analy-sis in body weight regulation.. Int J Obes Relat Melab Disord 2001; 25: 767-769.
  • 57 O’Neill MA, Farooqi IS, Wevrick R. Evaluation of Prader-Willi Syndrome gene MAGEL2 in severe childhood-onset obesity.. Obes Res 2005; 13: 1841-1842.
  • 58 Meyre D, Lecoeur C, Delplanque J. et al. A genomewide scan for childhood obesity-associated traits in French fami-lies shows significant linkage on chromosome 6q22.31-q23.2.. Diabetes 2004; 53: 803-811.
  • 59 Feitosa MF, Borecki IB, Rich SS. et al. Quantitative-trait loci influencing body-mass index reside on chromo-somes 7 and 13: the National Heart, Lung, and Blood Institute Family Heart Study.. Am J Hum Genet 2002; 70: 72-82.
  • 60 Varela MC, Simoes-Sato AY, Kim CA. et al. A new case of interstitial 6q16.2 deletion in a patient with Prader-Willi-like phenotype and investigation of SIM1 gene deletion in 87 patients with syndromic obesity.. Eur J Med Genet 2006; 49: 298-305.
  • 61 Holder JLJ, Butte NF, Zinn AR. Profound obesity associated with a balanced translo-cation that disrupts the SIM1 gene.. Hum Mol Genet 2000; 9: 101-108.
  • 62 Michaud JL, Boucher F, Melnyk A. et al. Sim1 haploinsuffi-ciency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus.. Hum Mol Genet 2001; 10: 1465-1473.
  • 63 Holder TL, Jr Zhang L, Kublaoui BM. et al. Sim1 gene dosage modulates the homeostatic feeding response to increased dietary fat in mice.. Am J Physiol Endocrinol Metab 2004; 287: E105-E113.
  • 64 Kublaoui BM, Holder Jr JL, Tolson KP, Gemelli T, Zinn AR. SIM1 overexpression par-tially rescues agouti yellow and diet-induced obesity by normalizing food intake.. En-docrinoi 2006; 147: 4542-4549.
  • 65 Kublaoui SM, Holder Jr JL, Gemelli T, Zinn AR. Simi haploinsufficiency impairs mela-nocortin-mediated anorexia and activation of paraventricular nucleus neurons.. Mol Endocrinol 2006; 20: 2483-2492.
  • 66 D’Angelo CS, Da Paz JA, Kim CA. et al. Prader-Willi-like phenotype: investigation of 1p36 deletion in 41 patients with delayed psychomotor development, hypotonia, obesity and/or hyperphagia, learning disabilities and behavioral problems.. Eur J Med Genet 2006; 49: 451-460.