Der Nuklearmediziner 2019; 42(01): 46-58
DOI: 10.1055/a-0807-3499
Theranostik
© Georg Thieme Verlag KG Stuttgart · New York

Theranostik von neuroendokrinen Tumoren

Theranostics of neuroendocrine tumors
Lisa Bodei
1   Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
,
Wolfgang A. Weber
2   Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München
› Author Affiliations
Further Information

Publication History

Publication Date:
25 April 2019 (online)

Zusammenfassung

Neuroendokrine Tumore sind eine heterogene Gruppe von Erkrankungen, die häufig spezifische Rezeptoren, Transporter und Enzyme exprimieren, die für die nuklearmedizinische Bildgebung und Therapie eingesetzt werden können. Insbesondere radioaktiv markierte Liganden der Somatostatinrezeptoren haben sich dabei als effektiv erwiesen. Die medikamentöse Therapie von neuroendokrinen Tumoren ist abhängig vom histologischen Differenzierungsgrad und der Tumorlokalisation. Durch randomisierte Studien wurde die Effektivität von Somatostatinanaloga nicht nur für die Behandlung von Symptomen, sondern auch zur Verlangsamung des Tumorwachstums, nachgewiesen. Der mTOR-Inhibitor Everolimus verlangsamt im Vergleich zu Placebo das Wachstum von neuroendokrinen Tumoren der Lunge, des Pankreas und des Gastrointestinaltrakts. Für den Multikinase-Inhibitor Sunitinib, der die tumorinduzierte Angiogenese hemmt, ist die Wirksamkeit nur für neuroendokrine Tumore des Pankreas nachgewiesen. Im Vergleich zu diesen medikamentösen Therapieansätzen kommt es durch die nuklearmedizinische Therapie mit deutlich höherer Wahrscheinlichkeit zu einem Therapieansprechen und einem längeren progressionsfreien Überleben im Vergleich zu Somatostatinanaloga. Dies wurde kürzlich auch durch eine randomisierte Studie bestätigt, die zur Zulassung von 177Lu-DOTA-TATE in Europa und den USA geführt hat. Eine randomisierte Studie, die 177Lu-DOTA-TOC mit Everolimus vergleicht, rekrutiert derzeit Patienten. Ob die Effektivität der nuklearmedizinischen Therapie durch den Einsatz von Somatostatinrezeptor-Antagonisten weiter gesteigert werden kann, wird ebenfalls in prospektiven Studien untersucht. Die Bedeutung von neuroendokrinen Tumoren für die Nuklearmedizin wird deshalb sehr wahrscheinlich weiter zunehmen.

Abstract

Neuroendocrine tumors are a heterogeneous group of diseases that frequently overexpress specific receptors, enzymes and transporters which can serve as target for nuclear imaging and therapy. Specifically, radiolabeled ligands of somatostatin receptors have been shown to be effective for imaging and radionuclide therapy of neuroendocrine tumors. Medical therapy of neuroendocrine tumors is dependent on histological differentiation and tumor localization. Randomized trials have demonstrated the efficacy of somatostatin analogues, not only for symptom control but also for slowing down of tumor growth. The mTOR inhibitor everolimus inhibits the growth of neuroendocrine tumors in the lung, pancreas, and gastrointestinal tract compared to placebo. For the multikinase inhibitor sunitinib, which inhibits tumor-induced angiogenesis, efficacy has so far only been demonstrated for neuroendocrine tumors of the pancreas. Compared to these medical therapies, radionuclide therapy is much more effective in causing tumor shrinkage and results in a longer progression-free survival than treatment with somatostatin analogues. This has recently been confirmed by a randomized trial that has led to the approval of 177Lu-DOTA-TATE in Europe and the USA randomized study comparing 177Lu-DOTA-TOC with everolimus is currently recruiting patients. Whether the effectiveness of radionuclide therapy can be increased further by somatostatin receptor antagonists is also being investigated in prospective studies. The importance of neuroendocrine tumors for nuclear medicine is therefore likely to further increase.

 
  • Literatur

  • 1 Dasari A, Shen C, Halperin D. et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol 2017; 3: 1335-1342
  • 2 Anomynous. Surveilance, Epidemiology, and End Results Program (SEER). 2018 https://seer.cancer.gov
  • 3 Kunz PL. Carcinoid and neuroendocrine tumors: building on success. J Clin Oncol 2015; 33: 1855-1863
  • 4 Kim JY, Hong SM, Ro JY. Recent updates on grading and classification of neuroendocrine tumors. Ann Diagn Pathol 2017; 29: 11-16
  • 5 Inzani F, Petrone G, Rindi G. The New World Health Organization Classification for Pancreatic Neuroendocrine Neoplasia. Endocrinol Metab Clin North Am 2018; 47: 463-470
  • 6 Rindi G, Klersy C, Albarello L. et al. Competitive Testing of the WHO 2010 versus the WHO 2017 Grading of Pancreatic Neuroendocrine Neoplasms: Data from a Large International Cohort Study. Neuroendocrinology 2018; 107: 375-386
  • 7 Delle Fave G, O'Toole D, Sundin A. et al. ENETS Consensus Guidelines Update for Gastroduodenal Neuroendocrine Neoplasms. Neuroendocrinology 2016; 103: 119-124
  • 8 Schnabel PA, Junker K. Pulmonary neuroendocrine tumors in the new WHO 2015 classification: Start of breaking new grounds?. Pathologe 2015; 36: 283-292
  • 9 Rindi G, Kloppel G, Alhman H. et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 2006; 449: 395-401
  • 10 AJCC Cancer Staging Manual. 8. Chicago: Springer; 2018
  • 11 Mafficini A, Scarpa A. Genomic landscape of pancreatic neuroendocrine tumours: the International Cancer Genome Consortium. J Endocrinol 2018; 236: R161-R167
  • 12 Marx SJ. Recent Topics Around Multiple Endocrine Neoplasia Type 1. J Clin Endocrinol Metab 2018; 103: 1296-1301
  • 13 Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24: T119-T134
  • 14 Plaza-Menacho I. Structure and function of RET in multiple endocrine neoplasia type 2. Endocr Relat Cancer 2018; 25: T79-T90
  • 15 Di Domenico A, Wiedmer T, Marinoni I. et al. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer 2017; 24: R315-R334
  • 16 Purohit NK, Shah RG, Adant S. et al. Potentiation of (177)Lu-octreotate peptide receptor radionuclide therapy of human neuroendocrine tumor cells by PARP inhibitor. Oncotarget 2018; 9: 24693-24706
  • 17 Wolin EM. Advances in the Diagnosis and Management of Well-Differentiated and Intermediate-Differentiated Neuroendocrine Tumors of the Lung. Chest 2017; 151: 1141-1146
  • 18 Caplin ME, Baudin E, Ferolla P. et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol 2015; 26: 1604-1620
  • 19 Pavel M, O'Toole D, Costa F. et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016; 103: 172-185
  • 20 Rinke A, Wiedenmann B, Auernhammer C. et al. S2k-Leitlinie Neuroendokrine Tumore. 2018 https://www.awmf.org/uploads/tx_szleitlinien/021-026l_S2k_Neuroendokrine_Tumore_2018-07.pdf , Zugriff am 20.03.2019
  • 21 Smit Duijzentkunst DA, Kwekkeboom DJ, Bodei L. Somatostatin Receptor 2-Targeting Compounds. J Nucl Med 2017; 58: 54s-60s
  • 22 Wolin EM, Jarzab B, Eriksson B. et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des Devel Ther 2015; 9: 5075-5086
  • 23 Kulke MH, Horsch D, Caplin ME. et al. Telotristat Ethyl, a Tryptophan Hydroxylase Inhibitor for the Treatment of Carcinoid Syndrome. J Clin Oncol 2017; 35: 14-23
  • 24 Rinke A, Muller HH, Schade-Brittinger C. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 2009; 27: 4656-4663
  • 25 Rinke A, Wittenberg M, Schade-Brittinger C. et al. Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients with Metastatic Neuroendocrine Midgut Tumors (PROMID): Results of Long-Term Survival. Neuroendocrinology 2017; 104: 26-32
  • 26 Caplin ME, Pavel M, Cwikla JB. et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 2014; 371: 224-233
  • 27 Cives M, Strosberg J. Treatment Strategies for Metastatic Neuroendocrine Tumors of the Gastrointestinal Tract. Curr Treat Options Oncol 2017; 18: 14
  • 28 Pavel ME, Hainsworth JD, Baudin E. et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 2011; 378: 2005-2012
  • 29 Yao JC, Shah MH, Ito T. et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011; 364: 514-523
  • 30 Yao JC, Pavel M, Lombard-Bohas C. et al. Everolimus for the Treatment of Advanced Pancreatic Neuroendocrine Tumors: Overall Survival and Circulating Biomarkers From the Randomized, Phase III RADIANT-3 Study. J Clin Oncol 2016; 34: 3906-3013
  • 31 Yao JC, Fazio N, Singh S. et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 2016; 387: 968-977
  • 32 Raymond E, Dahan L, Raoul JL. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 2011; 364: 501-513
  • 33 Faivre S, Niccoli P, Castellano D. et al. Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study. Ann Oncol 2017; 28: 339-343
  • 34 Reubi JC, Schar JC, Waser B. et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000; 27: 273-282
  • 35 Wild D, Schmitt JS, Ginj M. et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 2003; 30: 1338-1347
  • 36 Velikyan I, Sundin A, Sorensen J. et al. Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med 2014; 55: 204-210
  • 37 Wild D, Bomanji JB, Benkert P. et al. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med 2013; 54: 364-372
  • 38 Anomynous. NETSPOT (kit for the preparation of gallium Ga 68 dotatate injection). 2016 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/208547Orig1s000TOC.cfm
  • 39 Anomynous. SomaKit TOC. 2017 https://www.ema.europa.eu/en/medicines/human/EPAR/somakit-toc
  • 40 Anthony LB, Woltering EA, Espenan GD. et al. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med 2002; 32: 123-132
  • 41 Strosberg J, El-Haddad G, Wolin E. et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 2017; 376: 125-135
  • 42 Anomynous. FDA approves new treatment for certain digestive tract cancers. 2018 https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm594043.htm
  • 43 Anomynous. Lutathera. 2017 https://www.ema.europa.eu/en/medicines/human/EPAR/lutathera
  • 44 Anomynous. Efficacy and Safety of 177Lu-edotreotide PRRT in GEP-NET Patients (COMPETE). 2017 https://clinicaltrials.gov/ct2/show/NCT03049189
  • 45 Imhof A, Brunner P, Marincek N. et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 2011; 29: 2416-2423
  • 46 Bodei L, Kidd M, Paganelli G. et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging 2015; 42: 5-19
  • 47 Ianniello A, Sansovini M, Severi S. et al. Peptide receptor radionuclide therapy with (177)Lu-DOTATATE in advanced bronchial carcinoids: prognostic role of thyroid transcription factor 1 and (18)F-FDG PET. Eur J Nucl Med Mol Imaging 2016; 43: 1040-1046
  • 48 Carlsen EA, Fazio N, Granberg D. et al. Peptide receptor radionuclide therapy in gastroenteropancreatic NEN G3: a multicenter cohort study. Endocr Relat Cancer 2019; 26: 227-239
  • 49 Nicolini S, Severi S, Ianniello A. et al. Investigation of receptor radionuclide therapy with (177)Lu-DOTATATE in patients with GEP-NEN and a high Ki-67 proliferation index. Eur J Nucl Med Mol Imaging 2018; 45: 923-930
  • 50 Bodei L, Weber WA. Somatostatin Receptor Imaging of Neuroendocrine Tumors: From Agonists to Antagonists. J Nucl Med 2018; 59: 907-908
  • 51 Ginj M, Zhang H, Waser B. et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 2006; 103: 16436-16441
  • 52 Wild D, Fani M, Behe M. et al. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med 2011; 52: 1412-1417
  • 53 Wild D, Fani M, Fischer R. et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med 2014; 55: 1248-1252
  • 54 Reidy D, Pandit-Taskar N, Krebs S. et al. Theranostic trial of well differentiated neuroendocrine tumors (NETs) with somatostatin antagonists 68Ga-OPS202 and 177Lu-OPS201. J Clin Oncol 2017; 35: 4094
  • 55 Nicolas GP, Schreiter N, Kaul F. et al. Sensitivity Comparison of (68)Ga-OPS202 and (68)Ga-DOTATOC PET/CT in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase II Imaging Study. J Nucl Med 2018; 59: 915-921
  • 56 Waldherr C, Pless M, Maecke HR. et al. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol 2001; 12: 941-945
  • 57 Waldherr C, Pless M, Maecke HR. et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 2002; 43: 610-616
  • 58 Bushnell Jr. DL, O'Dorisio TM, O'Dorisio MS. et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol 2010; 28: 1652-1659
  • 59 Cwikla JB, Sankowski A, Seklecka N. et al. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol 2010; 21: 787-794
  • 60 Savelli G, Bertagna F, Franco F. et al. Final results of a phase 2A study for the treatment of metastatic neuroendocrine tumors with a fixed activity of 90Y-DOTA-D-Phe1-Tyr3 octreotide. Cancer 2012; 118: 2915-2924
  • 61 Kwekkeboom DJ, de Herder WW, Kam BL. et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3] octreotate: toxicity, efficacy, and survival. J Clin Oncol 2008; 26: 2124-2130
  • 62 Bodei L, Cremonesi M, Grana CM. et al. Peptide receptor radionuclide therapy with (1)(7)(7)Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging 2011; 38: 2125-2135
  • 63 Sansovini M, Severi S, Ambrosetti A. et al. Treatment with the radiolabelled somatostatin analog Lu-DOTATATE for advanced pancreatic neuroendocrine tumors. Neuroendocrinology 2013; 97: 347-354
  • 64 Paganelli G, Sansovini M, Ambrosetti A. et al. 177 Lu-Dota-octreotate radionuclide therapy of advanced gastrointestinal neuroendocrine tumors: results from a phase II study. Eur J Nucl Med Mol Imaging 2014; 41: 1845-1851
  • 65 Delpassand ES, Samarghandi A, Zamanian S. et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE for patients with somatostatin receptor-expressing neuroendocrine tumors: the first US phase 2 experience. Pancreas 2014; 43: 518-525
  • 66 Baum RP, Kluge AW, Kulkarni H. et al. (177)Lu-DOTA](0)-D-Phe(1)-Tyr(3)-Octreotide ((177)Lu-DOTATOC) For Peptide Receptor Radiotherapy in Patients with Advanced Neuroendocrine Tumours: A Phase-II Study. Theranostics 2016; 6: 501-510