Rofo 2019; 191(06): 512-521
DOI: 10.1055/a-0800-0113
Review
© Georg Thieme Verlag KG Stuttgart · New York

Persönliche Strahlenschutzmittel und Dosimetrie des medizinischen Personals in der interventionellen Radiologie: Aktueller Status und neue Entwicklungen

Article in several languages: English | deutsch
Alexander Marc König
1   Diagnostic and Interventional Radiology, Philipps-University Marburg, Germany
,
Robin Etzel
2   Institute of Medical Physics and Radiation Protection, Mittelhessen University of Applied Sciences, Giessen, Germany
,
Rohit Philip Thomas
1   Diagnostic and Interventional Radiology, Philipps-University Marburg, Germany
,
Andreas H. Mahnken
1   Diagnostic and Interventional Radiology, Philipps-University Marburg, Germany
› Author Affiliations
Further Information

Publication History

09 February 2018

01 November 2018

Publication Date:
31 January 2019 (online)

Zusammenfassung

Hintergrund Röntgenstrahlen haben ein sehr breites Anwendungsspektrum in der Medizin. Mit dem Trend zu minimalinvasiven Eingriffen steigen besonders die Zahlen Computertomografie- (CT) und durchleuchtungsgesteuerter Interventionen. Mit der zunehmenden Komplexität der Eingriffe steigt außerdem die Untersuchungsdauer und damit häufig auch die Expositionsdauer. Um das medizinische Personal vor allem vor der Streustrahlung zu schützen, gibt es eine Vielzahl von persönlichen Strahlenschutzmitteln. Diese Übersichtsarbeit soll einen Überblick über die verfügbaren Systeme, ihre Effektivität bezüglich des persönlichen Strahlenschutzes und der entsprechenden Dosimetrie geben.

Methode Literaturrecherche, vor allem in pubmed mit den Schlüsselwörtern: Strahlenschutz, Augenlinsendosis, Strahlenexposition in der interventionellen Radiologie, Katarakt, Tumorrisiko, Dosimetrie in der interventionellen Radiologie und Strahlendosimetrie.

Ergebnisse und Schlussfolgerung Ein optimaler Strahlschutz sieht immer eine Kombination aus unterschiedlichen Strahlenschutzmitteln bzw. Methoden vor. Der Strahlenschutz und das Monitoring des Kopf-Hals-Bereichs, vor allem der Augenlinse, hat weiterhin Entwicklungs- und Akzeptanzbedarf. Hier werden neue Bleiglas-Brillen mit integrierten Dosimetern erwartet, damit zukünftig die genaue Dosis bestimmt und somit das Kataraktrisiko reduziert werden kann.

Kernaussagen:

  • Die richtige Kombination aus Strahlenschutzmittel und entsprechender Dosimetrie erhöht die Sicherheit beim Umgang mit Röntgenstrahlen.

Zitierweise

  • König AM, Etzel R, Thomas RP et al. Personal Radiation Protection and Corresponding Dosimetry in Interventional Radiology: An Overview and Future Developments. Fortschr Röntgenstr 2019; 191: 512 – 521

 
  • References

  • 1 Fritz-Niggli H. Forschung mit Röntgenstrahlen, Bilanz eines Jahrhunderts; Strahlenbiologie – Von den Anfängen zur heutigen Forschung. Berlin, Heidelberg, New York: Springer Verlag; 1995: 299-315
  • 2 Gohrbandt E, Gebka J, Berndorfer A. Handbuch der plastischen Chirurgie. Band 1. Walter de Gruyter; 1972: 17
  • 3 Unna PG. Die chronische Röntgendermatitis der Radiologen. Fortschr Röntgenstr 1904 – 1905; 8. 67-91
  • 4 Levy-Dorn M. Vorrichtungen zum Schutz des Untersuchers gegen die Röntgenstrahlen. Münch Med Wschr 1898; 8: 577
  • 5 Levy-Dorn M. Neues aus der Röntgentechnik Verhandl. Dtsch Röntgen-Ge 1905; 1: 149-153
  • 6 Geyer PS. Strahlenschutz und Strahlenschäden beim Umgang mit Röntgenstrahlen in der Veterinärröntgenologie; Eine Untersuchung der deutsch- und englischsprachigen Literatur unter Brücksichtigung der aktuellen Röntgenverordnung. Dissertation Freie Universität Berlin; 2003 Journal Nr. 2704
  • 7 Bhargavan M. Trends in the utilization of medical procedures that use ionizing radiation. Health Physics 2008; 95: 612-627
  • 8 Mettler FA, Bhargavan M, Faulkner K. et al. Radiologic and Nuclear Medicine Studies in the United States and Worldwide: Frequency, Radiation Dose, and Comparison with Other Radiation Sources 1950–2007. Radiology 2009; 253: 520-531
  • 9 Kloeckner R, Santos DP, Schneider J. et al. Radiation exposure in CT-guided interventions. European Journal of Radiology 2013; 82: 2253-2257
  • 10 Kitahara CM, Linet MS, Balter S. et al. Occupational Radiation Exposure and Deaths From Malignant Intracranial Neoplasms of the Brain and CNS in U.S. Radiologic Technologists, 1983–2012. Am J Roentgenol 2017; 208: 1-7
  • 11 Linet MS, Hauptmann M, Freedman DM. et al. Interventional radiography and mortality risks in U.S. radiologic technologists. Pediatr Radiol 2006; 36: 113-120
  • 12 Rajaraman P, Doody MM, Yu CL. et al. Cancer Risks in U.S. Radiologic Technologists Working With Fluoroscopically Guided Interventional Procedures, 1994–2008. Am J Roentgenol 2016; 206: 1101-1110
  • 13 Seals KF, Lee EW, Cagnon CH. et al. Radiation-Induced Cataractogenesis: A Critical Literature Review for the Interventional Radiologist. Cardiovasc Intervent Radiol 2016; 39: 151-160
  • 14 Vano E, Gonzalez L, Beneytez F. et al. Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories. The British Journal of Radiology 1998; 71: 728-733
  • 15 Luchs JS, Rosioreanu A, Gregorius D. et al. Radiation Safety during Spine Interventions. J Vasc Interv Radiol 2005; 16: 107-111
  • 16 Meisinger QC, Stahl CM, Andre MP. et al. Radiation Protection for the Fluoroscopy Operator and Staff. Am J Roentgenol 2016; 207: 745-754
  • 17 Galster M, Guhl C, Uder M. et al. Exposition der Augenlinse des Untersuchers und Effizienz der Strahlenschutzmittel bei fluoroskopischen Interventionen. Fortschr Röntgenstr 2013; 185: 474-481
  • 18 Thornton RH, Dauer LT, Altamirano JP. et al. Comparing Strategies for Operator Eye Protection in the Interventional Radiology Suite. J Vasc Interv Radiol 2010; 21: 1703-1707
  • 19 Hu P, Kong Y, Chen B. et al. Shielding effect of lead glasses in radiologists eye lens exposure in interventional procedures. Radiation Protection Dosimetry 2017; 174: 136-140
  • 20 Vanhavere F, Carinou E, Domienik J. et al. Measurements of eye lens doses in interventional radiology and cardiology: Final results of the ORAMED project. Radiation Measurements 2011; 46: 1243-1247
  • 21 Martin CJ. Eye lens dosimetry for fluoroscopically guided clinical procedures: practical approaches to protection and dose monitoring. Radiat Prot Dosimetry 2016; 169: 286-291
  • 22 Van Rooijen BD, De Haan MW, Das M. et al. Efficacy of Radiation Safety Glasses in Interventional Radiology. Cardiovasc Intervent Radiol 2014; 37: 1149-1155
  • 23 Maeder M, Brunner-La Rocca HP, Wolber T. et al. Impact of a Lead Glass Screen on Scatter Radiation to Eyes and Hands in Interventional Cardiologists. Catheterization and Cardiovascular Interventions 2006; 67: 18-23
  • 24 Gilligan P, Lynch J, Eder H. et al. Assessment of Clinical Occupational Dose Reduction Effect of a New Interventional Cardiology Shield for Radial Access Combined With a Scatter Reducing Drape. Catheterization and Cardiovascular Interventions 2015; 86: 935-940
  • 25 Schueler A, Vrieze TJ, Bjarnason H. et al. An Investigation of Operator Exposure in Interventional Radiology. RadioGraphics 2006; 26: 1533-1541
  • 26 Shortt CP, Al-Hashimi H, Malone L. et al. Staff Radiation Doses to the Lower Extremities in Interventional Radiology. Cardiovasc Intervent Radiol 2007; 30: 1206-1209
  • 27 Mahnken AH, Sedlmair M, Ritter C. et al. Efficacy of Lower-Body Shielding in Computed Tomography Fluoroscopy-Guided Interventions. Cardiovasc Intervent Radiol 2012; 35: 1475-1479
  • 28 Neeman Z, Dromi SA, Sarin S. et al. CT Fluoroscopy Shielding: Decreases in Scattered Radiation for the Patient and Operator. J Vasc Interv Radiol 2006; 17: 1999-2004
  • 29 Haipt F, Kirsch M, Hosten N. Evaluation einer Strahlenschutzwand als Dauerschutzeinrichtung zur Dosisreduktion des Arztes bei Interventionen unter CT-Durchleuchtung. Fortschr Röntgenstr 2010; 182: 512-517
  • 30 King JN, Champlin AM, Kelsey CA. et al. Using a Sterile Disposable Protective Surgical Drape for Reduction of Radiation Exposure to Interventionalists. Am J Roentgenol 2002; 178: 153-157
  • 31 Dromi S, Wood BJ, Oberoi J. et al. Heavy Metal Pad Shielding during Fluoroscopic Interventions. J Vasc Interv Radiol 2006; 17: 1201-1206
  • 32 Lange HW, von Boetticher H. Reduction of Operator Radiation Dose by a Pelvic Lead Shield During Cardiac Catheterization by Radial Access. JACC 2012; 5: 445-449
  • 33 Lynskey GE, Powell DK, Dixon RG. et al. Radiation Protection in Interventional Radiology. J Vasc Interv Radiol 2013; 24: 1547-1551
  • 34 Toossi MTB, Zare H, Bayani SH. et al. Evaluation of the Effectiveness of the Lead Aprons and Thyroid Shields Worn by Cardiologists in Angiography Departments of Two Main General Hospitals in Mashhad, Iran. Journal of Nuclear Science and Technology 2008; 5: 159-162
  • 35 Andreassi MG, Piccaluga E, Guagliumi G. et al. Occupational Health Risks in Cardiac Catheterization Laboratory Workers. Circ Cardiovasc Interv 2016; 9: 1-8
  • 36 Klein LW, Tra Y, Garratt KN. et al. Occupational Health Hazards of Interventional Cardiologists in the Current Decade. Catheterization and Cardiovascular Interventions 2015; 86: 913-924
  • 37 Goldsein JA, Balter S, Cowley M. et al. Occupational Hazards of Interventional Cardiologists: Prevalence of Orthopedic Health Problems in Contemporary Practice. Catheterization and Cardiovascular Interventions 2004; 63: 407-411
  • 38 Kazempour M, Saeedimoghadam M, Shekoohi Shooli F. et al. Assessment of the Radiation Attenuation Properties if Several Lead Free Composites by Monte Carlo Simulation. J Biomed Phys Eng 2015; 5: 67-76
  • 39 McCaffrey JP, Tessier F, Shen H. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Med Phys 2012; 39: 4537-4546
  • 40 Uthoff H, Pena C, West J. et al. Evaluation of Novel Disposable, Light-Weight Radiation Protection Devices in an Interventional Radiology Setting: A Randomized Controlled Trial. Am J Roentgenol 2013; 200: 915-920
  • 41 Uthoff H, Benenati MJ, Katzen BT. et al. Lightweight Bilayer Barium Sulfate-Bismuth Oxide Composite Thyroid Collars for Superior Radiation Protection in Fluoroscopy-guided Interventions: A Prospective Randomized Controlled Trial. Radiology 2014; 270: 601-606
  • 42 Marichal DA, Anwar T, Kirsch D. et al. Comparison of a Suspended Radiation Protection System versus Standard Lead Apron for Radiation Exposure of a Simulated Interventionalist. J Vasc Interv Radiol 2011; 22: 437-442
  • 43 Haussen DC, Van Der Bom IMJ, Nogueira RG. A prospective case control comparison of the ZeroGravity system versus a standard lead apron as radiation protection strategy in neuroendovascular procedures. J NeuroIntervent Surg 2016; 8: 1052-1055
  • 44 Savage C, Seale TM, Shaw CJ. et al. Evaluation of a Suspended Personal Radiation Protection System vs. Conventional Apron and Shields in Clinical Interventional Procedures. Open Journal of radiology 2013; 3: 143-151
  • 45 Fetterly K, Schueler B, Grams M. et al. Head and Neck Radiation Dose and Radiation Safety for Interventional Physicians. Cardiovascular interventions 2016; 10: 520-528
  • 46 Merce MS, Korchi AM, Kobzeva L. et al. The value of protective head cap and glasses in neurointerventional radiology. J NeuroIntervent Surg 2016; 8: 736-740
  • 47 Sakamoto H, Ikegawa H, Kobayashi H. et al. A study of operator’s hand and finger exposure dose reduction during angiographic procedures. Nihon Hoshasen Gijutsu Gakkai Zasshi 2009; 65: 25-34
  • 48 Kamusella P, Scheer F, Lüdke CW. et al. Interventional Angiography: Radiation Protection for the Examiner by using Lead-free Gloves. Journal of Clinical and Diagnostic Research 2017; 11: 26-29
  • 49 Stoeckelhuber BM, Leibecke T, Schulz E. et al. Radiation Dose to the Radiologist’s Hand During Continuous CT Fluoroscopy-Guided Interventions. Cardiovasc Intervent Radiol 2005; 28: 589-594
  • 50 Sarmento S, Pereira JS, Sousa MJ. et al. The use of needle holders in CTF guided biopsies as a dose reduction tool. J Appl Clin Med Phys 2018; 19: 250-258
  • 51 Wigge P. Das neue Strahlenschutzgesetzgesetz – Überblick über die Auswirkungen auf das Fachgebiet der Radiologie. Fortschr Röntgenstr 2017; 189: 1010-1014
  • 52 The Use of Film Badges for Personal Monitoring. Vienna: International Atomic Energy Agency; 1962 (Safety Series No. 8)
  • 53 Jahn A, Sommer M, Henniger J. Environmental Dosimetry with the BeOSL Personal Dosemeter. Radiation Protection Dosimetry 2016; 170: 346-349
  • 54 Haninger T, Hödlmoser H, Figel M. et al. Properties of the BeOSL Dosimetry system in the framework of a large-scale personal monitoring service. Radiation Protection Dosimetry 2016; 170: 269-273
  • 55 Terasaki K, Fujibuchi T, Murazaki H. et al. Evaluation of basic characteristics of a semiconductor detector for personal radiation dose monitoring. Radiol Phys Technol 2017; 10: 189-194
  • 56 Clairand I, Struelens L, Bordy JM. et al. Intercomparison of active personal dosemeters in interventional radiology. Radiation Protection Dosimetry 2008; 129: 340-345
  • 57 Cardoso J, Santos JAM, Santos L. et al. Characterization of an active dosemeter according to IEC 61526:2010. Radiation Protection Dosimetry 2016; 170: 127-131
  • 58 Mangiarotti M, D’Ercole L, Quaretti P. et al. evaluation ofan active personal dosimetry system in interventional radiology and neuroradiology: preliminary results. Radiation Protection Dosimetry 2016; 172: 483-487
  • 59 Sailer AM, Vergoossen L, Paulis L. et al. Personalized Feedback on Staff Dose in Fluoroscopy-Guided Interventions: A New Era in Radiation Dose Monitoring. Cardiovasc Intervent Radiol 2017; 40: 1756-1762
  • 60 Rigatelli G, Panin S, Fiorrevanti R. et al. Impact of Operators’ Height on Individual Radiation Exposure Measurements During Catheter-Based Cardiovascular Interventions. Journal of Interventional Cardiology 2016; 29: 83-88
  • 61 Neto FAB, Alves AFF, Mascarenhas YM. et al. Efficiency of personal dosimetry methods in vascular interventional radiology. Physica Medica 2017; 37: 58-67
  • 62 Adamus R, Loose R, Wucherer M. et al. Strahlenschutz in der interventionellen Radiologie. Radiologe 2016; 56: 275-281