RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000024.xml
Hebamme 2018; 31(06): 409-414
DOI: 10.1055/a-0792-0676
DOI: 10.1055/a-0792-0676
CNE Schwerpunkt
Humane Milch-Oligosaccharide in aller (Babys) Munde
Weitere Informationen
Publikationsverlauf
Publikationsdatum:
04. Januar 2019 (online)
Wissenschaftlern weltweit gelingt es zunehmend, die wertvollen Inhaltsstoffe von Muttermilch und ihre große Bedeutung für die Säuglingsgesundheit zu entschlüsseln. Das Institut für Biotechnologie und Bioprozesstechnik der TU Graz forscht zum Thema humane MilchOligosaccharide (HMO). In ihrem Übersichtsartikel erklärt die Autorin bisherige Erkenntnisse über den Aufbau, das Vorkommen und die Wirkungsweise von HMO. Daraus ergeben sich spannende Perspektiven für mögliche zukünftige Anwendungen.
-
Literatur
- 1 Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 2012; 22: 1147-1162
- 2 Zivkovic A, German J, Lebrilla C. et al. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A 2011; , 108 , 4653-4658
- 3 Kuhn R, Baer H. Die Konstitution der Lacto-N-tetraose. Chem Ber 1956; 89: 504-511
- 4 Urashima T, Taufik E, Fukuda K. et al. Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Biosci Biotechnol Biochem 2013; 77: 455-466
- 5 Albrecht S, Lane J, Mariño K. et al. A comparative study of free oligosaccharides in the milk of domestic animals. Br J Nutr 2014; 111: 1313-1328
- 6 Ninonuevo M, Park Y, Yin H. et al. A strategy for annotating the human milk glycome, J Agric Food Chem 2006; , 54: 7471-7480
- 7 Bode L. The functional biology of human milk oligosaccharides. Early Hum Dev 2015; 91: 619-622
- 8 Kunz C, Meyer C, Collado M. et al. Influence of gestational age, secretor, and lewis blood group status on the oligosaccharide content of human milk. J Pediatr Gastroenterol Nutr 2017; 64: 789-798
- 9 Thurl S, Munzert M, Boehm G. et al. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev 2017; 75: 920-933
- 10 Azad M, Robertson B, Atakora F. et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J Nutr 2018; 148: 1733-1742
- 11 McGuire M, Meehan C, McGuire M. et al. What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am J Clin Nutr 2017; 105: 1086-1100
- 12 Korpela K, Salonen A, Hickman B. et al. Fucosylated oligosaccharides in mother’s milk alleviate the effects of caesarean birth on infant gut microbiota. Sci Rep 2018; 8: 13757
- 13 Bergström A, Skov T, Bahl M. et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 2014; 80: 2889-2900
- 14 Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med 2016; 8: 51
- 15 Figueroa-Lozano S, de Vos P. Relationship between oligosaccharides and glycoconjugates content in human milk and the development of the gut barrier. Compr Rev Food Sci Food Saf 2018 , early view
- 16 Kho ZY, Lal SK. The human gut microbiome – A potential controller of wellness and disease. Front Microbiol 2018; 9: 1835
- 17 Thomson P, Medina D, Garrido D. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization. Food Microbiol 2018; 75: 37-46
- 18 Yu Z-T, Nanthakumar N, Newburg D. The human milk oligosaccharide 2′-fucosyllactose quenches Campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa. J Nutr 2016; 146: 1980-1990
- 19 Coppa G V, Zampini L, Galeazzi T. et al. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res 2006; 59: 377-382
- 20 Morozov V, Hansman G, Hanisch F-G. et al. Human milk oligosaccharides as promising antivirals. Mol Nutr Food Res 2018; 62: 1700679
- 21 Jantscher-Krenn E, Zherebtsov M, Nissan C. et al. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. 2012; 61: 1417-1425
- 22 Gonia S, Tuepker M, Heisel T. et al. Human milk oligosaccharides inhibit Candida albicans invasion of human premature intestinal epithelial cells. J Nutr 2015; 145: 1992-1998
- 23 Lin A, Autran C, Espanola S. et al. Human milk oligosaccharides protect bladder epithelial cells against uropathogenic Escherichia coli invasion and cytotoxicity. J Infect Dis 2014; 209: 389-398
- 24 Xiao L, van’t Land B, Engen P. et al. Human milk oligosaccharides protect against the development of autoimmune diabetes in NOD-mice. Sci Rep 2018; 8: 3829
- 25 Xiao L, Leusink-Muis T, Kettelarij N. et al. Human milk oligosaccharide 2ʹ-Fucosyllactose improves innate and adaptive immunity in an influenza-specific murine vaccination model. Front Immunol 2018; 9: 452
- 26 Ramani S, Stewart C, Laucirica D. et al. Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat Commun 2018; 9: 5010
- 27 Vandenplas Y, Berger B, Carnielli V. et al. Human milk oligosaccharides: 2ʹ-fucosyllactose (2ʹ-FL) and lacto-n-neotetraose (LNnT) in infant formula. Nutrients 2018; 10: 1161
- 28 Vázquez E, Barranco A, Ramírez M. et al. Effects of a human milk oligosaccharide, 2ʹ-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J Nutr Biochem 2015; 26: 455-465
- 29 Tarr A, Galley J, Fisher S. et al. The prebiotics 3’Sialyllactose and 6’Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut-brain axis. Brain Behav Immun 2015; 50: 166-177
- 30 Zehra S, Khambati I, Vierhout M. et al. Human milk oligosaccharides attenuate antigen-antibody complex induced chemokine release from human intestinal epithelial cell lines. J Food Sci 2018; 83: 499-508
- 31 Elison E, Vigsnaes L, Rindom Krogsgaard L. et al. Oral supplementation of healthy adults with 2′-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr 2016; 116: 1356-1368
- 32 Mezoff E, Hawkins J, Ollberding N. et al. The human milk oligosaccharide 2ʹ-fucosyllactose augments the adaptive response to extensive intestinal. Am J Physiol - Gastrointest Liver Physiol 2016; 310: G427-G438
- 33 Craft K, Gaddy J, Townsend S. Human Milk Oligosaccharides (HMOs) sensitize group B Streptococcus to Clindamycin, Erythromycin, Gentamicin, and Minocycline on a strain specific basis. ACS Chem Biol 2018; 13: 2020-2026
- 34 Moro G, Minoli I, Mosca M. et al. Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr 2002; 34: 291-295
- 35 Hoeflinger J, Davis S, Chow J. et al. In vitro impact of human milk oligosaccharides on Enterobacteriaceae growth. J Agric Food Chem 2015; 63: 3295-3302
- 36 Bych K, Mikš M, Johanson T. et al. Production of HMOs using microbial hosts – from cell engineering to large scale production. Curr Opin Biotechnol 2019; 56: 130-137
- 37 Marriage B, Buck R, Goehring K. et al. Infants fed a lower calorie formula with 2′FL show growth and 2′FL uptake like breast-fed infants. J Pediatr Gastroenterol Nutr 2015; 61: 649-658
- 38 Goehring K, Marriage B, Oliver J. et al. Similar to those who are breastfed, infants fed a formula containing 2ʹ-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. J Nutr 2016; 146: 2559-2566
- 39 Puccio G, Alliet P, Cajozzo C. et al. Effects of Infant Formula With Human Milk Oligosaccharides on Growth and Morbidity. J Pediatr Gastroenterol Nutr 2017; 64: 624-631