Subscribe to RSS
DOI: 10.1055/a-0762-0822
Beeinträchtigung der Sehbahn bei Glaukomen
Impairment of the Visual System in GlaucomaPublication History
eingereicht 26 August 2018
akzeptiert 08 October 2018
Publication Date:
14 February 2019 (online)
Zusammenfassung
Bei Glaukomen ist die Darstellung der Sehbahn mittels Diffusionsbildgebung und metabolischer MRT möglich; es findet sich mit zunehmendem Alter eine Atrophie der Sehstrahlung, welche das Ausmaß der physiologischen Hirnvolumenminderung deutlich übersteigt. Bei den unterschiedlichen Glaukomsubtypen erlaubt die qualitative Auswertung der Diffusionsbildgebung mit Berechnung von fraktionaler Anisotropie (FA) und radialer Diffusivität (RD) die Beurteilung der axonalen Integrität entlang der Sehbahn. Es finden sich bei Glaukomen bereits im Anfangsstadium der Erkrankung deutliche FA- und RD-Veränderungen sowohl entlang der Sehbahn wie auch in weiteren Hirnregionen außerhalb der Sehbahn, die nahelegen, dass es sich beim Glaukom um eine komplexe neurodegenerative Erkrankung handelt. Die metabolische MRT wird uns künftig weitere Einblicke in die Pathophysiologie verschiedener Glaukomformen geben und damit zum Therapiemonitoring beitragen und die Diagnostik verbessern.
Abstract
MR Diffusion Tensor Imaging (DTI) enables visualisation of the visual system in glaucoma; it has been shown that the atrophy of the optic radiation is more pronounced in glaucoma than in age-matched controls. The atrophy of the optic radiation thereby correlates with OCT and visual field measures. Diffusion tensor imaging permits quantification of the axonal integrity of the optic radiation by calculation of fractional anisotropy (FA) and radial diffusivity (RD). Both within and also outside the visual system, there are substantial changes in FA and RD, changes suggesting a complex neurodegenerative disease. Metabolic MRI by specific Na+-coils and by the CEST-technique (CEST: chemical exchange saturation transfer) will enable visualisation of neuronal cell death and pathological protein accumulation in the visual system. It is proposed that glaucomatous atrophy of the visual system may be induced by antero- and retrograde axonal degeneration. In normal tension glaucoma and PEX glaucoma, retrograde degeneration is induced by ischemic lesions or pathological protein accumulation within the cerebral portion of the visual system. Magnetic resonance imaging of the visual system with DTI and metabolic imaging will potentially improve therapeutic monitoring and diagnosis of glaucoma.
-
Literatur
- 1 Engelhorn T, Haider S, Michelson G. et al. A new semi-quantitative approach for analysing 3T diffusion tensor imaging of optic fibres and its clinical evaluation in glaucoma. Acad Radiol 2010; 17: 1313-1316
- 2 Engelhorn T, Michelson G, Waerntges S. et al. Diffusion tensor imaging detects rarefaction of optic radiation in glaucoma patients. Acad Radiol 2011; 18: 764-769
- 3 Engelhorn T, Michelson G, Waerntges S. et al. A new approach to assess intracranial white matter abnormalities in glaucoma patients changes of fractional anisotropy detected by 3T diffusion tensor imaging. Acad Radiol 2012; 19: 485-488
- 4 Schmidt MA, Mennecke A, Michelson G. et al. DTI analysis in patients with primary open-angle glaucoma: impact of registration on voxel-wise statistics. PLoS One 2014; 9: e99344
- 5 Michelson G, Engelhorn T, Waerntges S. et al. Diffusion tensor imaging for in vivo detection of degenerated optic radiation. ISRN Ophthalmol 2011; 2011: 648450
- 6 Michelson G, Wärntges S, Engelhorn T. et al. [Integrity/demyelination of the optic radiation, morphology of the papilla, and contrast sensitivity in glaucoma patients]. Klin Monatsbl Augenheilkd 2012; 229: 143-148
- 7 Schmidt MA, Knott M, Heidemann R. et al. Investigation of lateral geniculate nucleus volume and diffusion tensor imaging in patients with normal tension glaucoma using 7 tesla magnetic resonance imaging. PLoS One 2018; 13: e0198830 doi:10.1371/journal.pone.0198830
- 8 Schoemann J, Engelhorn T, Waerntges S. et al. Cerebral microinfarcts in primary open-angle glaucoma correlated with DTI-derived integrity of optic radiation. Invest Ophthalmol Vis Sci 2014; 55: 7241-7247 doi:10.1167/iovs.14-14919
- 9 Rubino PA, Rhoton jr. AL, Tong X. Three-dimensional relationships of the optic radiation. Neurosurgery 2005; 57: 219-227
- 10 Yücel YH, Zhang Q, Weinreb RN. et al. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 2003; 22: 465-481
- 11 Su JH, Deng G, Cotman CW. Transneuronal degeneration in the spread of Alzheimerʼs disease pathology: immunohistochemical evidence for the transmission of tau hyperphosphorylation. Neurobiol Dis 1997; 4: 365-375
- 12 Conti AC, Raghupathi R, Trojanowski JQ. et al. Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. J Neurosci 1998; 18: 5663-5672
- 13 Quigley HA, Nickells RW, Kerrigan LA. et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995; 36: 774-786
- 14 Bien A, Seidenbecher CI, Böckers TM. et al. Apoptotic versus necrotic characteristics of retinal ganglion cell death after partial optic nerve injury. J Neurotrauma 1999; 16: 153-163
- 15 Wen W, Sachdev PS. Extent and distribution of white matter hyperintensities in stroke patients: the Sydney Stroke Study. Stroke 2004; 35: 2813-2819
- 16 Breteler MM, van Swieten JC, Bots ML. et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology 1994; 44: 1246-1252
- 17 Longstreth jr. WT, Manolio TA, Arnold A. et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke 1996; 27: 1274-1282
- 18 Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol Psychiatry 2008; 64: 273-280
- 19 Wong TY, Klein R, Sharrett AR. et al. Cerebral white matter lesions, retinopathy, and incident clinical stroke. JAMA 2002; 288: 67-74
- 20 Wong TY, Klein R, Klein BE. et al. Retinal microvascular abnormalities and their relations with hypertension, cardiovascular diseases and mortality. Surv Ophthalmol 2001; 46: 59-80
- 21 Goto I, Kimoto K, Katsuki S. et al. Pathological studies on the intracerebral and retinal arteries in cerebrovascular and noncerebrovascular diseases. Stroke 1975; 6: 263-269
- 22 Sotak CH. The role of diffusion tensor imaging in the evaluation of ischemic brain injury – a review. NMR Biomed 2002; 15: 561-569
- 23 Xu J, Sun SW, Naismith RT. et al. Assessing optic nerve pathology with diffusion MRI: from mouse to human. NMR Biomed 2008; 21: 928-940
- 24 Song SK, Yoshino J, Le TQ. et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 2005; 26: 132-140
- 25 Schmidt MA, Haider S, Mennecke A. et al. Voxel based analysis of diffusion indices in patients with primary open-angle glaucoma using tract-based spatial statistics. J Clin Exp Ophthalmol 2015; 6: 415 doi:10.4172/2155-9570.1000415
- 26 Takagi T, Nakamura M, Yamada M. et al. Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. Neuroimage 2009; 44: 884-892
- 27 Michelson G, Engelhorn T, Wärntges S. et al. DTI parameters of axonal integrity and demyelination of the optic radiation correlate with glaucoma indices. Graefes Arch Clin Exp Ophthalmol 2013; 251: 243-253
- 28 Fazekas F, Kleinert R, Offenbacher H. et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993; 43: 1683-1689
- 29 Schlötzer-Schrehardt U. Genetics and genomics of pseudoexfoliation syndrome/glaucoma. Middle East Afr J Ophthalmol 2011; 18: 30-36