Horm Metab Res 2018; 50(12): 840-852
DOI: 10.1055/a-0725-9297
Review
© Georg Thieme Verlag KG Stuttgart · New York

Reflections on Thyroid Autoimmunity: A Personal Overview from the Past into the Future

Basil Rapoport
1   Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, CA, USA
,
Sandra M. McLachlan
1   Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, CA, USA
› Author Affiliations
Further Information

Publication History

received 21 June 2018

accepted 23 August 2018

Publication Date:
24 October 2018 (online)

Abstract

After investigating thyroid autoimmunity for more than 40 years, we present a personal perspective on the field. Despite effective therapies for Graves’ hyperthyroidism and Hashimoto’s thyroiditis, cures are elusive. Novel forms of therapy are being developed, such as small molecule inhibitors of the TSH receptor (TSHR), but cure will require immunotherapy. This goal requires advances in understanding the pathogenesis of thyroid autoimmunity, the ‘keys’ for which are the thyroid antigens themselves. Presently, however, greater investigative focus is on non-thyroid specific immune cell types and molecules. Thyroid autoantigens are the drivers of the autoimmune response, a prime example being the TSHR. In our view, the TSHR is the culprit as well as the victim in Graves’ disease because of its unique structure. Unlike the closely related gonadotropin receptors, the TSHR cleaves into subunits and there is strong evidence that its shed extracellular A-subunit, not the holoreceptor, is the major antigen driving pathogenic thyroid stimulating autoantibodies (TSAb) development. There is no Graves’ disease of the gonads. Studies of potential antigen-specific immunotherapies require an animal model. Such models have been developed in which TSAb can be induced or, more importantly, arise spontaneously. Not appreciated until recently by thyroid investigators is that B cell surface autoantibodies are highly efficient ‘antigen receptors’ and the epitope to which an autoantibody binds influences antigen processing and which peptide is presented to T cells. These animal models and recombinant human autoantibodies cloned from Graves’ and Hashimoto’s B cells (plasma cells) are available for study by future generations.

 
  • References

  • 1 Rose NR, Witebsky E. Studies on organ specificity. V. Changes in the thyroid glands of rabbits following active immunization with rabbit thyroid extracts. J Immunol 1956; 76: 417-427
  • 2 Roitt IM, Doniach D, Campbell PN, Hudson RV. Auto-antibodies in Hashimoto's disease (lymphadenoid goitre). Lancet 1956; 271: 820-821
  • 3 Belyavin G, Trotter WR. Investigations of thyroid antigens reacting with Hashimoto sera. Evidence for an antigen other than thyroglobulin. Lancet 1959; i: 648-652
  • 4 Adams DD, Purves HD. Abnormal responses in the assay of thyrotropin. Proc Univ Otago Med Sch 1956; 34: 11-12
  • 5 Meek JC, Jones AE, Lewis UJ, Vanderlaan WP. Characterization of the Long-acting thyroid stimulator of graves' disease. Proc Natl Acad Sci USA 1964; 52: 342-349
  • 6 Kriss JP, Pleshakov V, Chien JR. Isolation and identification of the long-acting thyroid stimulator and its relation to hyperthyroidism and circumscribed pretibial myxedema. J Clin Endocrinol Metab 1964; 24: 1005-1028
  • 7 McLachlan SM, McGregor A, Rees Smith B, Hall R. Thyroid-autoantibody synthesis by Hashimoto thyroid lymphocytes. Lancet 1979; 1: 162-163
  • 8 McLachlan SM, Rapoport B. The molecular biology of thyroid peroxidase: Cloning, expression and role as autoantigen in autoimmune thyroid disease. Endocr Rev 1992; 13: 192-206
  • 9 Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin (TSH) receptor: Interaction with TSH and autoantibodies. Endocr Rev 1998; 19: 673-716
  • 10 McLachlan SM, Rapoport B. Breaking tolerance to thyroid antigens: Changing concepts in thyroid autoimmunity. Endocr Rev 2014; 35: 59-105
  • 11 Pastan I, Roth J, Macchia V. Binding of hormone to tissue: the first step in polypeptide hormone action. Proc Natl Acad Sci USA 1966; 56: 1802-1809
  • 12 Rapoport B, Adams RJ. Bioassay of TSH using dog thyroid cells in monolayer culture. Metabolism 1978; 27: 1732-1742
  • 13 Smith BR, Hall R. Thyroid-stimulating immunoglobulins in Graves' disease. Lancet 1974; 2: 427-431
  • 14 Smith BR, Bolton J, Young S, Collyer A, Weeden A, Bradbury J, Weightman D, Perros P, Sanders J, Furmaniak J. A new assay for thyrotropin receptor autoantibodies. Thyroid 2004; 14: 830-835
  • 15 Lytton SD, Li Y, Olivo PD, Kohn LD, Kahaly GJ. Novel chimeric thyroid-stimulating hormone-receptor bioassay for thyroid-stimulating immunoglobulins. Clin Exp Immunol 2010; 162: 438-446
  • 16 Frank CU, Braeth S, Dietrich JW, Wanjura D, Loos U. Bridge technology with TSH receptor chimera for sensitive direct detection of TSH receptor antibodies causing graves' disease: analytical and clinical evaluation. Horm Metab Res 2015; 47: 880-888
  • 17 Tahara K, Ishikawa N, Yamamoto K, Hirai A, Ito K, Tamura Y, Yoshida Y, Kohn LD. Epitopes for thyroid stimulating and blocking autoantibodies on the extracellular domain of the human thyrotropin receptor. Thyroid 1997; 6: 867-877
  • 18 Chazenbalk GD, Jaume JC, McLachlan SM, Rapoport B. Engineering the human thyrotropin receptor ectodomain from a non-secreted form to a secreted, highly immunoreactive glycoprotein that neutralizes autoantibodies in Graves' patients' sera. J Biol Chem 1997; 272: 18959-18965
  • 19 Schwarz-Lauer L, Chazenbalk GD, McLachlan SM, Ochi Y, Nagayama Y, Rapoport B. Evidence for a simplified view of autoantibody interactions with the thyrotropin receptor. Thyroid 2002; 12: 115-120
  • 20 Sanders J, Chirgadze DY, Sanders P, Baker S, Sullivan A, Bhardwaja A, Bolton J, Reeve M, Nakatake N, Evans M, Richards T, Powell M, Miguel RN, Blundell TL, Furmaniak J, Smith BR. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid 2007; 17: 395-410
  • 21 Nagayama Y, Wadsworth HL, Russo D, Chazenbalk GD, Rapoport B. Binding domains of stimulatory and inhibitory thyrotropin (TSH) receptor autoantibodies determined with chimeric TSH- lutropin/chorionic gonadotropin receptors. J Clin Invest 1991; 88: 336-340
  • 22 Morgenthaler NG, Ho SC, Minich WB. Stimulating and blocking thyroid-stimulating hormone (TSH) receptor autoantibodies from patients with Graves' disease and autoimmune hypothyroidism have very similar concentration, TSH receptor affinity, and binding sites. J Clin Endocrinol Metab 2007; 92: 1058-1065
  • 23 Sanders P, Young S, Sanders J, Kabelis K, Baker S, Sullivan A, Evans M, Clark J, Wilmot J, Hu X, Roberts E, Powell M, Nunez MR, Furmaniak J, Rees SB. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol 2011; 46: 81-99
  • 24 Li Y, Kim J, Diana T, Klasen R, Olivo PD, Kahaly GJ. A novel bioassay for anti-thyrotrophin receptor autoantibodies detects both thyroid-blocking and stimulating activity. Clin Exp Immunol 2013; 173: 390-397
  • 25 Diana T, Wuster C, Olivo PD, Unterrainer A, Konig J, Kanitz M, Bossowski A, Decallonne B, Kahaly GJ. Performance and Specificity of 6 Immunoassays for TSH Receptor Antibodies: A Multicenter Study. Eur Thyroid J 2017; 6: 243-249
  • 26 Furmaniak J, Sanders J, Rees SB. Blocking type TSH receptor antibodies. Auto Immun Highlights 2013; 4: 11-26
  • 27 McLachlan SM, Rapoport B. Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: Potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid 2013; 23: 14-24
  • 28 Nunez MR, Sanders J, Chirgadze DY, Furmaniak J, Rees Smith B. Thyroid stimulating autoantibody M22 mimics TSH binding to the TSH receptor leucine rich domain: a comparative structural study of protein-protein interactions. J Mol Endocrinol 2009; 42: 381-395
  • 29 Evans M, Sanders J, Tagami T, Sanders P, Young S, Roberts E, Wilmot J, Hu X, Kabelis K, Clark J, Holl S, Richards T, Collyer A, Furmaniak J, Smith BR. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin Endocrinol (Oxf) 2010; 73: 404-412
  • 30 Buckland PR, Rickards CR, Howells RD, Davies Jones E, Rees Smith B. Photo-affinity labelling of the thyrotropin receptor. FEBS Lett 1982; 145: 245-249
  • 31 Davies Jones E, Rees Smith B. A water-soluble fragment of the thyroid-stimulating hormone receptor which binds both thyroid-stimulating hormone and thyroid- stimulating hormone receptor antibodies. J Endocrinol 1984; 100: 113-118
  • 32 Couet J, de Bernard S, Loosfelt H, Saunier B, Milgrom E, Misrahi M. Cell surface protein disulfide-isomerase is involved in the shedding of human thyrotropin receptor ectodomain. Biochemistry 1996; 35: 14800-14805
  • 33 Tanaka K, Chazenbalk GD, McLachlan SM, Rapoport B. The shed thyrotropin receptor is primarily a carboxyl terminal truncated form of the A subunit, not the entire A subunit. Molec Cell Endocrinol 1999; 150: 113-119
  • 34 Chazenbalk GD, Wang Y, Guo J, Hutchison JS, Segal D, Jaume JC, McLachlan SM, Rapoport B. A mouse monoclonal antibody to a thyrotropin receptor ectodomain variant provides insight into the exquisite antigenic conformational requirement, epitopes and in vivo concentration of human autoantibodies. J Clin Endocrinol Metab 1999; 84: 702-710
  • 35 Johnstone AP, Cridland JC, DaCosta CR, Harfst E, Shepherd PS. Monoclonal antibodies that recognize the native human thyrotropin receptor. Molec Cell Endocrinol 1994; 105: R1-R9
  • 36 Da Costa CR, Johnstone AP. Production of the thyrotropin receptor extracellular domain as a glycosylphosphatidylinositol-anchored membrane protein and its interaction with thyrotropin and autoantibodies. J Biol Chem 1998; 273: 11874-11880
  • 37 Chazenbalk GD, Pichurin P, Chen CR, Latrofa F, Johnstone AP, McLachlan SM, Rapoport B. Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J Clin Invest 2002; 110: 209-217
  • 38 . Mizutori Y, Chen CR, Latrofa F, McLachlan SM, Rapoport B. Evidence that shed TSH receptor A-subunits drive affinity maturation of autoantibodies causing Graves' disease. J Clin Endocrinol Metab 2009; 94: 927-935
  • 39 Rapoport B, McLachlan SM. The thyrotropin receptor in Graves' disease. Thyroid 2007; 17: 911-922
  • 40 Shimojo N, Kohno Y, Yamaguchi K-I, Kikuoka S-I, Hoshioka A, Niimi H, Hirai A, Tamura Y, Saito Y, Kohn LD, Tahara K. Induction of Graves-like disease in mice by immunization with fibroblasts transfected with the thyrotropin repector and a class II molecule. Proc Natl Acad Sci USA 1996; 93: 11074-11079
  • 41 Costagliola S, Many MC, Denef JF, Pohlenz J, Refetoff S, Vassart G. Genetic immunization of outbred mice with thyrotropin receptor cDNA provides a model of Graves' disease. J Clin Invest 2000; 105: 803-811
  • 42 Nagayama Y, Kita-Furuyama M, Ando T, Nakao K, Mizuguchi H, Hayakawa T, Eguchi K, Niwa M. A novel murine model of Graves' hyperthyroidism with intramuscular injection of adenovirus expressing the thyrotropin receptor. J Immunol 2002; 168: 2789-2794
  • 43 Chen C-R, Pichurin P, Nagayama Y, Latrofa F, Rapoport B, McLachlan SM. The thyrotropin receptor autoantigen in Graves' disease is the culprit as well as the victim. J Clin Invest 2003; 111: 1897-1904
  • 44 Kaneda T, Honda A, Hakozaki A, Fuse T, Muto A, Yoshida T. An improved Graves' disease model established by using in vivo electroporation exhibited long-term immunity to hyperthyroidism in BALB/c mice. Endocrinology 2007; 148: 2335-2344
  • 45 Moshkelgosha S, So PW, Deasy N, Diaz-Cano S, Banga JP. Cutting edge: Retrobulbar inflammation, adipogenesis, and acute orbital congestion in a preclinical female mouse model of graves' orbitopathy induced by thyrotropin receptor plasmid-in vivo electroporation. Endocrinology 2013; 154: 3008-3015
  • 46 Chazenbalk G, McLachlan S, Pichurin P, Rapoport B. A prion-like shift between two conformational forms of a recombinant thyrotropin receptor A-subunit module: purification and stabilization using chemical chaperones of the form reactive with Graves' autoantibodies. J Clin Endocrinol Metab 2001; 86: 1287-1293
  • 47 Chen CR, Hubbard PA, Salazar LM, McLachlan SM, Murali R, Rapoport B. Crystal structure of a TSH receptor monoclonal antibody: Insight into Graves' disease pathogenesis. Mol Endocrinol 2015; 29: 99-107
  • 48 Rapoport B, Aliesky HA, Chen CR, McLachlan SM. Evidence that TSH receptor a-subunit multimers, not monomers, drive antibody affinity maturation in graves' disease. J Clin Endocrinol Metab 2015; 100: E871-E875
  • 49 Latif R, Graves P, Davies TF. Oligomerization of the human thyrotropin receptor. Fluorescent protein-tagged hRSHR reveals post-translational complexes. J Biol Chem 2001; 276: 45217-45224
  • 50 Urizar E, Montanelli L, Loy T, Bonomi M, Swillens S, Gales C, Bouvier M, Smits G, Vassart G, Costagliola S. Glycoprotein hormone receptors: Link between receptor homodimerization and negative cooperativity. EMBO J 2005; 24: 1954-1964
  • 51 Pichurin PN, Chen C-R, Chazenbalk GD, Aliesky H, Pham N, Rapoport B, McLachlan SM. Targeted expression of the human thyrotropin receptor A-subunit to the mouse thyroid: Insight into overcoming the lack of response to A-subunit adenovirus immunization. J Immunol 2006; 176: 668-676
  • 52 Misharin AV, Nagayama Y, Aliesky HA, Rapoport B, McLachlan SM. Studies in mice deficient for the autoimmune regulator (Aire) and transgenic for the thyrotropin receptor reveal a role for Aire in tolerance for thyroid autoantigens. Endocrinol 2009; 150: 2948-2956
  • 53 Colobran R, Armengol MP, Faner R, Gartner M, Tykocinski LO, Lucas A, Ruiz M, Juan M, Kyewski B, Pujol-Borrell R. Association of an SNP with intrathymic transcription of TSHR and Graves' disease: A role for defective thymic tolerance. Hum Mol Genet 2011; 20: 3415-3423
  • 54 Stefan M, Wei C, Lombardi A, Li CW, Concepcion ES, Inabnet III WB, Owen R, Zhang W, Tomer Y. Genetic-epigenetic dysregulation of thymic TSH receptor gene expression triggers thyroid autoimmunity. Proc Natl Acad Sci USA 2014; 111: 12562-12567
  • 55 McLachlan SM, Nagayama Y, Pichurin PN, Mizutori Y, Chen CR, Misharin A, Aliesky HA, Rapoport B. The link between Graves' disease and Hashimoto's thyroiditis: A role for regulatory T cells. Endocrinology 2007; 148: 5724-5733
  • 56 McLachlan SM, Alpi K, Rapoport B. Hypothesis and review: Does Graves' disease develop in non-human great apes?. Thyroid 2011; 21: 1359-1366
  • 57 Braley-Mullen H, Yu S. NOD.H-2h4 mice: An important and underutilized animal model of autoimmune thyroiditis and Sjogren's syndrome. Adv Immunol 2015; 126: 1-43
  • 58 Chen CR, Hamidi S, Braley-Mullen H, Nagayama Y, Bresee C, Aliesky HA, Rapoport B, McLachlan SM. Antibodies to thyroid peroxidase arise spontaneously with age in NOD.H-2h4 mice and appear after thyroglobulin antibodies. Endocrinology 2010; 151: 4583-4593
  • 59 Rapoport B, Aliesky HA, Banuelos B, Chen CR, McLachlan SM. A unique mouse strain that develops spontaneous, iodine-accelerated, pathogenic antibodies to the human thyrotrophin receptor. J Immunol 2015; 194: 4154-4161
  • 60 Rapoport B, Banuelos B, Aliesky HA, Hartwig Trier N, McLachlan SM. Critical differences between induced and spontaneous mouse models of Graves' disease with implications for antigen-specific immunotherapy in humans. J Immunol 2016; 197: 4560-4568
  • 61 Chen CR, Aliesky H, Pichurin PN, Nagayama Y, McLachlan SM, Rapoport B. Susceptibility rather than resistance to hyperthyroidism is dominant in a thyrotropin receptor adenovirus-induced animal model of Graves' disease as revealed by BALB/c-C57BL/6 hybrid mice. Endocrinology 2004; 145: 4927-4933
  • 62 Misharin AV, Nagayama Y, Aliesky H, Mizutori Y, Rapoport B, McLachlan SM. Attenuation of induced hyperthyroidism in mice by pretreatment with thyrotropin receptor protein: deviation of thyroid-stimulating antibody to non-functional antibodies. Endocrinology 2009; 150: 3944-3952
  • 63 Morshed SA, Ando T, Latif R, Davies TF. Neutral antibodies to the TSH receptor are present in Graves' disease and regulate selective signaling cascades. Endocrinology 2010; 151: 5537-5549
  • 64 Morshed SA, Ma R, Latif R, Davies TF. Biased signaling by thyroid-stimulating hormone receptor-specific antibodies determines thyrocyte survival in autoimmunity. Sci Signal 2018; 11 pii: eaah4120. DOI: 10.1126/scisignal.aah4120.
  • 65 Morshed SA, Ma R, Latif R, Davies TF. How one TSH receptor antibody induces thyrocyte proliferation while another induces apoptosis. J Autoimmun 2013; 47: 17-24
  • 66 Rapoport B, McLachlan SM. TSH receptor cleavage into subunits and shedding of the A-subunit; a molecular and clinical perspective. Endocr Rev 2016; 37: 114-134
  • 67 Latif R, Morshed SA, Zaidi M, Davies TF. The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling. Endocrinol Metab Clin North Am 2009; 38: 319-341 viii
  • 68 Loosfelt H, Pichon C, Jolivet A, Misrahi M, Caillou B, Jamous M, Vannier B, Milgrom E. Two-subunit structure of the human thyrotropin receptor. Proc Natl Acad Sci USA 1992; 89: 3765-3769
  • 69 Misrahi M, Milgrom E. Cleavage and shedding of the TSH receptor. Eur J Endocrinol 1997; 137: 599-602
  • 70 Vassart G, Costagliola S. A physiological role for the posttranslational cleavage of the thyrotropin receptor?. Endocrinology 2004; 145: 1-3
  • 71 Furmaniak J, Hashim FA, Buckland PR, Petersen VB, Beever K, Howells RD, Rees Smith B. Photoaffinity labelling of the TSH receptor on FRTL5 cells. FEBS Lett 1987; 215: 316-322
  • 72 Chen CR, Chazenbalk GD, Wawrowsky KA, McLachlan SM, Rapoport B. Evidence that human thyroid cells express uncleaved, single-chain thyrotropin receptors on their surface. Endocrinology 2006; 147: 3107-3113
  • 73 Sanders J, Evans M, Premawardhana LD, Depraetere H, Jeffreys J, Richards T, Furmaniak J, Rees SB. Human monoclonal thyroid stimulating autoantibody. Lancet 2003; 362: 126-128
  • 74 Sanders J, Evans M, Betterle C, Sanders P, Bhardwaja A, Young S, Roberts E, Wilmot J, Richards T, Kiddie A, Small K, Platt H, Summerhayes S, Harris R, Reeve M, Coco G, Zanchetta R, Chen S, Furmaniak J, Rees Smith B. A human monoclonal autoantibody to the thyrotropin receptor with thyroid stimulating blocking activity. Thyroid 2008; 18: 735-746
  • 75 Davies TF, Laurberg P, Bahn RS. Hyperthyroid Disorders. In: Melmed S, Polonsky KS, Reed Larsen P, Kronenberg HM. (eds) Williams Textbook of Endocrinology. 13th ed Philadelphia, PA: Elsevier; 2016. 380
  • 76 Rosenbaum JT, Choi D, Wong A, Wilson DJ, Grossniklaus HE, Harrington CA, Dailey RA, Ng JD, Steele EA, Czyz CN, Foster JA, Tse D, Alabiad C, Dubovy S, Parekh PK, Harris GJ, Kazim M, Patel PJ, White VA, Dolman PJ, Edward DP, Alkatan HM, Al Hussain H, Selva D, Yeatts RP, Korn BS, Kikkawa DO, Stauffer P, Planck SR. The role of the immune response in the pathogenesis of thyroid eye disease: A Reassessment. PLoS One 2015; 10: e0137654
  • 77 Kumar S, Iyer S, Bauer H, Coenen M, Bahn RS. A stimulatory thyrotropin receptor antibody enhances hyaluronic acid synthesis in Graves' orbital fibroblasts: Inhibition by an IGF-I receptor blocking antibody. J Clin Endocrinol Metab 2012; 97: 1681-1687
  • 78 Krieger CC, Gershengorn MC. A modified ELISA accurately measures secretion of high molecular weight hyaluronan (HA) by Graves' disease orbital cells. Endocrinology 2014; 155: 627-634
  • 79 Winand RJ. Increased urinary excretion of acidic mucopolysaccharides in exophthalmos. J Clin Invest 1968; 47: 2563-2568
  • 80 Yarman S, Gokkusu C, Turkoglu UM, Ademoglu E, Alagol F. Urinary glycosaminoglycans levels in patients with Graves' ophthalmopathy: And effective parameter for the grading of ophthalmopathy. Med Sci Res 1996; 24: 647-648
  • 81 Hansen C, Fraiture B, Rouhi R, Otto E, Forster G, Kahaly G. HPLC glycosaminoglycan analysis in patients with Graves' disease. Clin Sci (Colch ) 1997; 92: 511-517
  • 82 Rapoport B, Alsabeh R, Aftergood D, McLachlan SM. Elephantiasic pretibial myxedema: insight into and a hypothesis regarding the pathogenesis of the extrathyroidal manifestations of Graves' disease. Thyroid 2000; 10: 685-692
  • 83 Cianfarani F, Baldini E, Cavalli A, Marchioni E, Lembo L, Teson M, Persechino S, Zambruno G, Ulisse S, Odorisio T, D'Armiento M. TSH receptor and thyroid-specific gene expression in human skin. J Invest Dermatol 2010; 130: 93-101
  • 84 Miller RA. The Koebner phenomenon. Int J Dermatol 1982; 21: 192-197
  • 85 Smith TJ, Kahaly GJ, Ezra DG, Fleming JC, Dailey RA, Tang RA, Harris GJ, Antonelli A, Salvi M, Goldberg RA, Gigantelli JW, Couch SM, Shriver EM, Hayek BR, Hink EM, Woodward RM, Gabriel K, Magni G, Douglas RS. Teprotumumab for Thyroid-Associated Ophthalmopathy. N Engl J Med 2017; 376: 1748-1761
  • 86 Tramontano D, Cushing GW, Moses AC, Ingbar SH. Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by TSH and Graves'-IgG. Endocrinol 1986; 119: 940-942
  • 87 Weightman DR, Perros P, Sherif IH, Kendall-Taylor P. Autoantibodies to IGF-1 binding sites in thyroid associated ophthalmopathy. Autoimmunity 1993; 16: 251-257
  • 88 Pritchard J, Han R, Horst N, Cruikshank WW, Smith TJ. Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with Graves' disease is mediated through the insulin-like growth factor I receptor pathway. J Immunol 2003; 170: 6348-6354
  • 89 Tsui S, Naik V, Hoa N, Hwang CJ, Afifiyan NF, Sinha Hikim A, Gianoukakis AG, Douglas RS, Smith TJ. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: A tale of two antigens implicated in Graves' disease. J Immunol 2008; 181: 4397-4405
  • 90 Minich WB, Dehina N, Welsink T, Schwiebert C, Morgenthaler NG, Kohrle J, Eckstein A, Schomburg L. Autoantibodies to the IGF1 Receptor in Graves' Orbitopathy. J Clin Endocrinol Metab 2013; 98: 752-760
  • 91 Krieger CC, Place RF, Bevilacqua C, Marcus-Samuels B, Abel BS, Skarulis MC, Kahaly GJ, Neumann S, Gershengorn MC. TSH/IGF-1 Receptor Cross Talk in Graves' Ophthalmopathy Pathogenesis. J Clin Endocrinol Metab 2016; 101: 2340-2347
  • 92 Marcus-Samuels B, Krieger CC, Boutin A, Kahaly GJ, Neumann S, Gershengorn MC. Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors. Thyroid 2018; 28: 650-655
  • 93 Ma H, Zhang T, Shen H, Cao H, Du J. The adverse events profile of anti-IGF-1R monoclonal antibodies in cancer therapy. Br J Clin Pharmacol 2014; 77: 917-928
  • 94 Furmaniak J, Castro MR, Wentworth M, Algeciras A, Morris JC, Garrity J, Wikmot J, Kabelis K, Sanders J. Blocking the TSH receptor with the human monoclonal antibody K1-70 (TM) improves Graves' ophthalmopathy and aids control of advanced follicular thyroid carcinoma- results of long term treatment under the first in human single patient expanded use therapy. Eur. Thyroid J 2018; 7: 1 (Abstract)
  • 95 Neumann S, Kleinau G, Costanzi S, Moore S, Jiang JK, Raaka BM, Thomas CJ, Krause G, Gershengorn MC. A low-molecular-weight antagonist for the human thyrotropin receptor with therapeutic potential for hyperthyroidism. Endocrinology 2008; 149: 5945-5950
  • 96 . Van Koppen CJ, de Gooyer ME, Karstens WJ, Plate R, Conti PG, van Achterberg TA, van Amstel MG, Brands JH, Wat J, Berg RJ, Lane JR, Miltenburg AM, Timmers CM. Mechanism of Action of a Nanomolar Potent, Allosteric Antagonist of the Thyroid-Stimulating Hormone Receptor. Br J Pharmacol 2012; 165: 2314-2324
  • 97 Latif R, Ali MR, Ma R, David M, Morshed SA, Ohlmeyer M, Felsenfeld DP, Lau Z, Mezei M, Davies TF. New small molecule agonists to the thyrotropin receptor. Thyroid 2015; 25: 51-62
  • 98 Stan MN, Garrity JA, Carranza Leon BG, Prabin T, Bradley EA, Bahn RS. Randomized controlled trial of rituximab in patients with Graves' orbitopathy. J Clin Endocrinol Metab 2015; 100: 432-441
  • 99 Salvi M, Vannucchi G, Curro N, Campi I, Covelli D, Dazzi D, Simonetta S, Guastella C, Pignataro L, Avignone S, Beck-Peccoz P. Efficacy of B-cell targeted therapy with rituximab in patients with active moderate to severe Graves' orbitopathy: A randomized controlled study. J Clin Endocrinol Metab 2015; 100: 422-431
  • 100 Salvi M, Vannucchi G, Campi I, Curro N, Dazzi D, Simonetta S, Bonara P, Rossi S, Sina C, Guastella C, Ratiglia R, Beck-Peccoz P. Treatment of Graves' disease and associated ophthalmopathy with the anti-CD20 monoclonal antibody rituximab: an open study. Eur J Endocrinol 2007; 156: 33-40
  • 101 Rajaii F, McCoy AN, Smith TJ. Cytokines are both villains and potential therapeutic targets in thyroid-associated ophthalmopathy: From bench to bedside. Expert Rev Ophthalmol 2014; 9: 227-234
  • 102 Li B, Smith TJ. PI3K/AKT pathway mediates induction of IL-1RA by TSH in fibrocytes: modulation by PTEN. J Clin Endocrinol Metab 2014; 99: 3363-3372
  • 103 Fernando R, Lu Y, Atkins SJ, Mester T, Branham K, Smith TJ. Expression of thyrotropin receptor, thyroglobulin, sodium-iodide symporter, and thyroperoxidase by fibrocytes depends on AIRE. J Clin Endocrinol Metab 2014; 99: E1236-E1244
  • 104 Wang H, Atkins SJ, Fernando R, Wei RL, Smith TJ. Pentraxin-3 is a TSH-Inducible protein in human fibrocytes and orbital fibroblasts. Endocrinology 2015; 156: 4336-4344
  • 105 Fernando R, Atkins SJ, Smith TJ. Intersection of Chemokine and TSH Receptor Pathways in Human Fibrocytes: Emergence of CXCL-12/CXCR4 Cross Talk Potentially Relevant to Thyroid-Associated Ophthalmopathy. Endocrinology 2016; 157: 3779-3787
  • 106 Wu T, Mester T, Gupta S, Sun F, Smith TJ, Douglas RS. Thyrotropin and CD40L Stimulate Interleukin-12 Expression in Fibrocytes: Implications for Pathogenesis of Thyroid-Associated Ophthalmopathy. Thyroid 2016; 26: 1768-1777
  • 107 Mester T, Raychaudhuri N, Gillespie EF, Chen H, Smith TJ, Douglas RS. CD40 Expression in Fibrocytes Is Induced by TSH: Potential Synergistic Immune Activation. PLoS One 2016; 11: e0162994
  • 108 Fernando R, Grisolia ABD, Lu Y, Atkins S, Smith TJ. Slit2 modulates the inflammatory phenotype of orbit-infiltrating fibrocytes in graves' disease. J Immunol 2018; 200: 3942-3949
  • 109 Hanafusa T, Pujol-Borrell R, Chiovato L, Russell RCG, Doniach D, Bottazzo GF, Feldmann M. Aberrant expression of HLA-DR antigen on thyrocytes in Graves' disease: Relevance for autoimmunity. Lancet 1983; ii: 1111-1115
  • 110 Londei M, Lamb JR, Bottazzo GF, Feldmann M. Epithelial cells expressing aberrant MHC class II determinants can present antigen to cloned human T cells. Nature 1984; 312: 639-641
  • 111 Todd JA, Acha-Orbea H, Bell JI, Chao N, Fronek Z, Jacob CO, McDermott M, Sinha AA, Timmerman L, Steinman L, McDevitt HO. A molecular basis for MHC Class II – Associated autoimmunity. Science 1988; 240: 1003-1009
  • 112 Kohling HL, Plummer SF, Marchesi JR, Davidge KS, Ludgate M. The microbiota and autoimmunity: Their role in thyroid autoimmune diseases. Clin Immunol 2017; 183: 63-74
  • 113 McLachlan SM, Pegg CAS, Atherton MC, Middleton SM, Clark F, Rees Smith B. TSH receptor antibody synthesis by thyroid lymphocytes. Clin Endocrinol 1986; 24: 223-230
  • 114 Foti D, Kaufman KD, Chazenbalk GD, Rapoport B. Generation of a biologically-active, secreted form of human thyroid peroxidase by site-directed mutagenesis. Mol Endocrinol 1990; 4: 786-791
  • 115 Chazenbalk GD, Portolano S, Russo D, Hutchison JS, Rapoport B, McLachlan SM. Human organ-specific autoimmune disease: Molecular cloning and expression of an autoantibody gene repertoire for a major autoantigen reveals an antigenic dominant region and restricted immunoglobulin gene usage in the target organ. J Clin Invest 1993; 92: 62-74
  • 116 Portolano S, McLachlan SM, Rapoport B. High affinity, thyroid-specific human autoantibodies displayed on the surface of filamentous phage use V genes similar to other autoantibodies. J Immunol 1993; 151: 2839-2851
  • 117 Portolano S, Chazenbalk GD, Seto P, Hutchison JS, Rapoport B, McLachlan SM. Recognition by recombinant autoimmune thyroid disease-derived Fab fragments of a dominant conformational epitope on human thyroid peroxidase. J Clin Invest 1992; 90: 720-726
  • 118 Latrofa F, Phillips M, Rapoport B, McLachlan SM. Human monoclonal thyroglobulin autoantibodies: epitopes and immunoglobulin genes. J Clin Endocrinol Metab 2004; 89: 5116-5123
  • 119 McIntosh RS, Asghar MS, Kemp EH, Watson PF, Gardas A, Banga JP, Weetman AP. Analysis of IgG kappa anti-thyroid peroxidase antibodies from different tissues in Hashimoto's thyroiditis. J Clin Endocrinol Metab 1997; 82: 3818-3825
  • 120 Chapal N, Peraldi-Roux S, Bresson D, Pugniere M, Mani JC, Granier C, Baldet L, Guerrier B, Pau B, Bouanani M. Human anti-thyroid peroxidase single-chain fragment variable of Ig isolated from a combinatorial library assembled in-cell: Insights into the in vivo situation. J Immunol 2000; 164: 4162-4169
  • 121 McIntosh RS, Asghar MS, Watson PF, Kemp EH, Weetman AP. Cloning and analysis of IgG kappa and IgG lambda anti-thyroglobulin autoantibodies from a patient with Hashimoto's thyroiditis. Evidence for in vivo antigen-driven repertoire selection. J Immunol 1996; 157: 927-935
  • 122 Farrar J, Portolano S, Willcox N, Vincent A, Jacobson L, Newsom-Davis J, Rapoport B, McLachlan SM. Diverse Fab specific for acetylcholine receptor epitopes from a myasthenia gravis thymus combinatorial library. Int Immunol 1997; 9: 1311-1318
  • 123 McLachlan SM, Rapoport B. Thyroid Peroxidase as an Autoantigen. Thyroid 2007; 17: 939-948
  • 124 McLachlan SM, Rapoport B. Thyroid autoantibodies display both "original antigenic sin" and epitope spreading. Front Immunol 2017; 8: 1845
  • 125 Latrofa F, Pichurin P, Guo J, Rapoport B, McLachlan SM. Thyroglobulin-thyroperoxidase autoantibodies are polyreactive, not bispecific: Analysis using human monoclonal autoantibodies. J Clin Endocrinol Metab 2003; 88: 371-378
  • 126 Chacko S, Padlan E, Portolano S, McLachlan SM, Rapoport B. Structural studies of human autoantibodies. Crystal structure of a thyroid peroxidase autoantibody Fab. J Biol Chem 1996; 271: 12191-12198
  • 127 Dayan CM, Londei M, Corcoran AE, Grubeck-Loebenstein B, James RFL, Rapoport B, Feldmann M. Autoantigen recognition by thyroid-infiltrating T cells in Graves disease. Proc Natl Acad Sci USA 1991; 88: 7415-7419
  • 128 Quaratino S, Badami E, Pang YY, Bartok I, Dyson J, Kioussis D, Londei M, Maiuri L. Degenerate self-reactive human T-cell receptor causes spontaneous autoimmune disease in mice. Nat Med 2004; 10: 920-926
  • 129 Li CW, Osman R, Menconi F, Concepcion ES, Tomer Y. Flexible peptide recognition by HLA-DR triggers specific autoimmune T-cell responses in autoimmune thyroiditis and diabetes. J Autoimmun 2017; 76: 1-9
  • 130 Ehlers M, Thiel A, Bernecker C, Porwol D, Papewalis C, Willenberg HS, Schinner S, Hautzel H, Scherbaum WA, Schott M. Evidence of a combined cytotoxic thyroglobulin and thyroperoxidase epitope-specific cellular immunity in Hashimoto's thyroiditis. J Clin Endocrinol Metab 2012; 97: 1347-1354
  • 131 Muixi L, Carrascal M, Alvarez I, Daura X, Marti M, Armengol MP, Pinilla C, Abian J, Pujol-Borrell R, Jaraquemada D. Thyroglobulin peptides associate in vivo to HLA-DR in autoimmune thyroid glands. J Immunol 2008; 181: 795-807
  • 132 Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Ann Rev Immunol 1990; 8: 773-793
  • 133 Guo J, Quaratino S, Jaume JC, Costante G, Londei M, McLachlan SM, Rapoport B. Autoantibody-mediated capture and presentation of autoantigen to T cells via the Fc epsilon receptor by a recombinant human autoantibody Fab converted to IgE. J Immunol Meth 1996; 195: 81-92
  • 134 Guo J, Yan X-M, McLachlan SM, Rapoport B. Search for the autoantibody immunodominant region on thyroid peroxidase: Epitopic footprinting with a human monoclonal autoantibody locates a facet on the native antigen containing a highly conformational epitope. J Immunol 2001; 166: 1327-1333
  • 135 Guo J, McLachlan SM, Rapoport B. Antibodies focused on the human autoantibody immunodominant region are induced by B lymphocytes that constitutively express thyroid peroxidase diverted to the major histocompatibility complex II pathway. Thyroid 2006; 16: 343-349
  • 136 Smith MJ, Rihanek M, Coleman BM, Gottlieb PA, Sarapura VD, Cambier JC. Activation of thyroid antigen-reactive B cells in recent onset autoimmune thyroid disease patients. J Autoimmun 2018; 89: 82-89
  • 137 Pearce S, Razvi S, Boelaert K, Gilbert J, Wernig F, Muller I, Dayan C, Highham C, Murray R, Vaidya B, Kahaly GL, Barrell K, Carnegie C, Jansson L, Martin K. Antigen-specific immune modulation using TSH receptor peptides (ATX-GD-59) for Graves' hyperthyroidism: 'Results of a First-in-human' study. Eur Thyroid J 2018; 7: 1 (Abstract)
  • 138 Jansson L, Vrolix K, Jahraus A, Martin KF, Wraith DC. Immunotherapy with apitopes blocks the immune response to thyroid stimulating hormone receptor in HLA-DR transgenic mice. Endocrinology 2018; 159: 3446-3457
  • 139 Yeste A, Takenaka MC, Mascanfroni ID, Nadeau M, Kenison JE, Patel B, Tukpah AM, Babon JA, DeNicola M, Kent SC, Pozo D, Quintana FJ. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci Signal 2016; 9: ra61
  • 140 McCarthy DP, Yap JW, Harp CT, Song WK, Chen J, Pearson RM, Miller SD, Shea LD. An antigen-encapsulating nanoparticle platform for TH1/17 immune tolerance therapy. Nanomedicine 2017; 13: 191-200