Exp Clin Endocrinol Diabetes 2019; 127(02/03): 93-99
DOI: 10.1055/a-0713-0629
Review
© Georg Thieme Verlag KG Stuttgart · New York

Inherited Forms of Primary Hyperaldosteronism: New Genes, New Phenotypes and Proposition of A New Classification

Luis Gustavo Perez-Rivas
1   Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University, Munich, Germany
,
Tracy Ann Williams
1   Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University, Munich, Germany
2   Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
,
Martin Reincke
1   Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University, Munich, Germany
› Author Affiliations
Further Information

Publication History

received 16 May 2018
revised 06 August 2018

accepted 22 August 2018

Publication Date:
10 September 2018 (online)

Abstract

Primary aldosteronism is a common cause of endocrine hypertension. It results from the excess production of aldosterone by the adrenal cortex and is related to increased morbidity and mortality. Most cases of PA are sporadic but inherited patterns of the disease have been reported in the literature. Four forms of familial hyperaldosteronism (FH-I- FH-IV) are currently recognized, and the genetic basis has been clarified in recent years. In FH-I patients, aldosterone excess is produced by a CYP11B1/CYP11B2 fusion gene and it is suppressed by glucocorticoid treatment. FH-II is caused by mutations in the inwardly rectifying chloride channel CLCN2. FH-III is caused by mutations in KCNJ5, a gene coding for an inward rectifier K+ channel and mutations in the T-type calcium channel subunit CACNA1H cause FH-IV. In this review we summarize the knowledge on inherited forms of primary aldosteronism, the genetic alterations that cause them and the implications it may have for the classification. Based on current evidence, we propose the term “familial hyperaldosteronism” to refer only to inherited forms of primary aldosteronism with a known genetic basis.

 
  • References

  • 1 Rossi GP, Bernini G, Caliumi C. et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol 2006; 48: 2293-2300
  • 2 Mosso L, Carvajal C, González A. et al. Primary aldosteronism and hypertensive disease. Hypertension 2003; 42: 161-165
  • 3 Monticone S, Burrello J, Tizzani D. et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol 2017; 69: 1811-1820
  • 4 Funder JW, Carey RM, Mantero F. et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2016; 101: 1889-1916
  • 5 Lifton RP, Dluhy RG, Powers M. et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992; 355: 262-265
  • 6 Pallauf A, Schirpenbach C, Zwermann O. et al. The prevalence of familial hyperaldosteronism in apparently sporadic primary aldosteronism in Germany: A single center experience. Horm Metab Res 2012; 44: 215-220
  • 7 Carroll J, Dluhy R, Fallo F. et al. Aldosterone-producing adenomas do not contain glucocorticoid-remediable aldosteronism chimeric gene duplications. J Clin Endocrinol Metab 1996; 81: 4310-4312
  • 8 Prada ETA, Burrello J, Reincke M. et al. Old and new concepts in the molecular pathogenesis of primary aldosteronism. Hypertens (Dallas, Tex 1979) 2017; 70: 875-881
  • 9 Zennaro MC, Boulkroun S, Fernandes-Rosa FL. An update on novel mechanisms of primary aldosteronism. J Endocrinol 2015; 224: R63-R77
  • 10 Gomez-Sanchez CE. Channels and pumps in aldosterone-producing adenomas. J Clin Endocrinol Metab 2014; 99: 1152-1156
  • 11 Sutherland DJA, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J 1966; 95: 1109-1119
  • 12 Lenders JWM, Williams TA, Reincke M. et al. 18-Oxocortisol and 18-hydroxycortisol: Is there clinical utility of these steroids?. Eur J Endocrinol 2018; 178: R1-R9
  • 13 Mulatero P, Tizzani D, Viola A. et al. Prevalence and characteristics of familial hyperaldosteronism: the PATOGEN study (Primary Aldosteronism in TOrino-GENetic forms). Hypertension 2011; 58: 797-803
  • 14 Aglony M, Martínez-Aguayo A, Carvajal CA. et al. Frequency of familial hyperaldosteronism type 1 in a hypertensive pediatric population: Clinical and biochemical presentation. Hypertens (Dallas, Tex 1979) 2011; 57: 1117-1121
  • 15 Pizzolo F, Trabetti E, Guarini P. et al. Glucocorticoid remediable aldosteronism (GRA) screening in hypertensive patients from a primary care setting. J Hum Hypertens 2005; 19: 325-327
  • 16 Fallo F, Pilon C, Williams TA. et al. Coexistence of different phenotypes in a family with glucocorticoid-remediable aldosteronism. J Hum Hypertens 2004; 18: 47-51
  • 17 Mulatero P, Cella SMDi, Williams TA. et al. Glucocorticoid remediable aldosteronism: Low morbidity and mortality in a four-generation Italian pedigree. J Clin Endocrinol Metab 2002; 87: 3187-3191
  • 18 Stowasser M, Huggard PR, Rossetti TR. et al. Biochemical evidence of aldosterone overproduction and abnormal regulation in normotensive individuals with familial hyperaldosteronism type I. J Clin Endocrinol Metab 1999; 84: 4031-4036
  • 19 Stowasser M, Bachmann AW, Huggard PR. et al. Treatment of familial hyperaldosteronism type I: Only partial suppression of adrenocorticotropin required to correct hypertension. J Clin Endocrinol Metab 2000; 85: 3313-3318
  • 20 Rich GM, Ulick S, Cook S. et al. Glucocorticoid-remediable aldosteronism in a large kindred: clinical spectrum and diagnosis using a characteristic biochemical phenotype. Ann Intern Med 1992; 116: 813-820
  • 21 Litchfield WR, New MI, Coolidge C. et al. Evaluation of the dexamethasone suppression test for the diagnosis of glucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab 1997; 82: 3570-3573
  • 22 Jonsson JR, Klemm SA, Tunny TJ. et al. A new genetic test for familial hyperaldosteronism type I aids in the detection of curable hypertension. Biochem Biophys Res Commun 1995; 207: 565-571
  • 23 Mulatero P, Veglio F, Pilon C. et al. Diagnosis of glucocorticoid-remediable aldosteronism in primary aldosteronism: aldosterone response to dexamethasone and long polymerase chain reaction for chimeric gene. J Clin Endocrinol Metab 1998; 83: 2573-2575
  • 24 Quack I, Vonend O, Rump LC. Familial hyperaldosteronism IIII. Horm Metab Res 2010; 42: 424-428
  • 25 Gordon RD, Stowasser M, Tunny TJ. et al. Clinical and pathological diversity of primary aldosteronism, including a new familial variety. Clin Exp Pharmacol Physiol 1991; 18: 283-286
  • 26 Stowasser M, Gordon RD, Tunny TJ. et al. Primary aldosteronism: implications of a new familial variety. J Hypertens Suppl 1991; 9: S264-S265
  • 27 Stowasser M, Gordon RD, Tunny TJ. et al. Familial hyperaldosteronism type ii: Five families with a new variety of primary aldosteronism. Clin Exp Pharmacol Physiol 1992; 19: 319-322
  • 28 So A, Duffy DL, Gordon RD. et al. Familial hyperaldosteronism type II is linked to the chromosome 7p22 region but also shows predicted heterogeneity. J Hypertens 2005; 23: 1477-1484
  • 29 Carss KJ, Stowasser M, Gordon RD. et al. Further study of chromosome 7p22 to identify the molecular basis of familial hyperaldosteronism type II. J Hum Hypertens 2011; 25: 560-564
  • 30 Fallo F, Pilon C, Barzon L. et al. Retention of heterozygosity at chromosome 7p22 and 11q13 in aldosterone-producing tumours of patients with familial hyperaldosteronism not remediable by glucocorticoids. J Hum Hypertens 2004; 18: 829-830
  • 31 Jeske YWA, So A, Kelemen L. et al. Examination of chromosome 7p22 candidate genes RBaK, PMS2 and GNA12 in familial hyperaldosteronism type II. Clin Exp Pharmacol Physiol 2008; 35: 380-385
  • 32 Elphinstone MS, Gordon RD, So A. et al. Genomic structure of the human gene for protein kinase A regulatory subunit R1-beta (PRKAR1B) on 7p22: No evidence for mutations in familial hyperaldosteronism type II in a large affected kindred. Clin Endocrinol (Oxf) 2004; 61: 716-723
  • 33 Stowasser M, Gordon RD. Primary Aldosteronism: Changing Definitions and New Concepts of Physiology and Pathophysiology Both Inside and Outside the Kidney. Physiol Rev 2016; 96: 1327-1384
  • 34 Scholl UI, Stölting G, Schewe J. et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 2018; 50: 349-354
  • 35 Fernandes-Rosa FL, Daniil G, Orozco IJ. et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat Genet 2018; 1-7
  • 36 Thiemann A, Gründer S, Pusch M. et al. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 1992; 356: 57-60
  • 37 Di Bella D, Pareyson D, Savoiardo M. et al. Subclinical leukodystrophy and infertility in a man with a novel homozygous CLCN2 mutation. Neurology 2014; 83: 1217-1218
  • 38 Depienne C, Bugiani M, Dupuits C. et al. Brain white matter oedema due to ClC-2 chloride channel deficiency: An observational analytical study. Lancet Neurol 2013; 12: 659-668
  • 39 Bösl MR, Stein V, Hübner C. et al. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. EMBO J 2001; 20: 1289-1299
  • 40 Korah HE, Scholl UI. An update on familial hyperaldosteronism. Horm Metab Res 2015; 47: 941-946
  • 41 Geller DS, Zhang J, Wisgerhof MV. et al. A novel form of human mendelian hypertension featuring nonglucocorticoid- remediable aldosteronism. J Clin Endocrinol Metab 2008; 93: 3117-3123
  • 42 Gomez-Sanchez CE, Qi X, Gomez-Sanchez EP. et al. Disordered zonal and cellular CYP11B2 enzyme expression in familial hyperaldosteronism type 3. Mol Cell Endocrinol 2017; 439: 74-80
  • 43 Choi M, Scholl UI, Yue P. et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011; 331: 768-772
  • 44 Velarde-Miranda C, Gomez-Sanchez EP, Gomez-Sanchez CE. Regulation of aldosterone biosynthesis by the Kir3.4 (KCNJ5) potassium channel. Clin Exp Pharmacol Physiol 2013; 40: 895-901
  • 45 Oki K, Plonczynski MW, Lam ML. et al. Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis. Endocrinology 2012; 153: 1774-1782
  • 46 Scholl UI, Nelson-Williams C, Yue P. et al. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci USA 2012; 109: 2533-2538
  • 47 Mulatero P, Tauber P, Zennaro MC. et al. KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension 2012; 59: 235-240
  • 48 Monticone S, Hattangady NG, Penton D. et al. A novel Y152C KCNJ5 mutation responsible for familial hyperaldosteronism type III. J Clin Endocrinol Metab 2013; 98: 1861-1865
  • 49 Adachi M, Muroya K, Asakura Y. et al. Discordant genotype-phenotype correlation in familial hyperaldosteronism type III with KCNJ5 gene mutation: A patient report and review of the literature. Horm Res Paediatr 2014; 82: 138-142
  • 50 Tong A, Liu G, Wang F. et al. A novel phenotype of familial hyperaldosteronism type III: Concurrence of aldosteronism and cushing’s syndrome. J Clin Endocrinol Metab 2016; 101: 4290-4297
  • 51 Mussa A, Camilla R, Monticone S. et al. Polyuric-polydipsic syndrome in a pediatric case of non-glucocorticoid remediable familial hyperaldosteronism. Endocr J 2012; 59: 497-502
  • 52 Monticone S, Tetti M, Burrello J. et al. Familial hyperaldosteronism type III. J Hum Hypertens 2017; 31: 776-781
  • 53 Monticone S, Bandulik S, Stindl J. et al. A case of severe hyperaldosteronism caused by a de novo mutation affecting a critical salt bridge Kir3.4 residue. J Clin Endocrinol Metab 2015; 100: E114-E118
  • 54 Murthy M, Xu S, Massimo G. et al. Role for germline mutations and a rare coding single nucleotide polymorphism within the KCNJ5 potassium channel in a large cohort of sporadic cases of primary aldosteronism. Hypertension 2014; 63: 783-789
  • 55 Scholl UI, Stölting G, Nelson-Williams C. et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 2015; 4: e06315
  • 56 Daniil G, Fernandes-Rosa FL, Chemin J. et al. CACNA1H mutations are associated with different forms of primary aldosteronism. EBioMedicine 2016; 13: 225-236
  • 57 Scholl UI, Goh G, Stölting G. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013; 45: 1050-1054
  • 58 Talavera K, Nilius B. Biophysics and structure-function relationship of T-type Ca2+ channels. Cell Calcium 2006; 40: 97-114
  • 59 Steinberg KM, Yu B, Koboldt DC. et al. Exome sequencing of case-unaffected-parents trios reveals recessive and de novo genetic variants in sporadic ALS. Sci Rep 2015; 5: 1-8
  • 60 Splawski I, Yoo DS, Stotz SC. et al. CACNA1H mutations in autism spectrum disorders. J Biol Chem 2006; 281: 22085-22091
  • 61 Chen Y, Lu J, Pan H. et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003; 54: 239-243
  • 62 Marksteiner R, Schurr P, Berjukow S. et al. Inactivation determinants in segment IIIS6 of Ca(v)3.1. J Physiol 2001; 537: 27-34
  • 63 Reimer EN, Walenda G, Seidel E. et al. CACNA1HM1549V mutant calcium channel causes autonomous aldosterone production in HAC15 cells and is inhibited by mibefradil. Endocrinology 2016; 157: 3016-3022
  • 64 Assié G, Libé R, Espiard S. et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med 2013; 369: 2105-2114
  • 65 Espiard S, Drougat L, Libé R. et al. ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: Clinical and functional consequences. J Clin Endocrinol Metab 2015; 100: E926-E935
  • 66 Gagliardi L, Schreiber AW, Hahn CN. et al. ARMC5 mutations are common in familial bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2014; 99: E1784-E1792
  • 67 Rhayem Y, Pérez-Rivas LG, Dietz A. et al. PRKACA somatic mutations are rare findings in aldosterone-producing adenomas. J Clin Endocrinol Metab 2016; 101: 3010-3017
  • 68 Zilbermint M, Xekouki P, Faucz FR. et al. Primary aldosteronism and ARMC5 variants. J Clin Endocrinol Metab 2015; 100: E900-E909
  • 69 Mulatero P, Schiavi F, Williams TA. et al. ARMC5 mutation analysis in patients with primary aldosteronism and bilateral adrenal lesions. J Hum Hypertens 2016; 30: 374-378
  • 70 Asbach E, Williams TA, Reincke M. Recent developments in primary aldosteronism. Exp Clin Endocrinol Diabetes 2016; 124: 335-341
  • 71 Funder JW, Carey RM, Fardella C. et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2008; 93: 3266-3281