Planta Med 2019; 85(01): 14-23
DOI: 10.1055/a-0660-0236
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Network Pharmacology Uncovers Anticancer Activity of Mammea-Type Coumarins from Calophyllum brasiliense

Juan Carlos Gómez-Verjan*
1   División de Investigación Básica, Instituto Nacional de Geriatría (InGer), Mexico City, Mexico
,
Nadia Alejandra Rivero-Segura*
2   Unidad de Investigación en Reproducción Humana, Instituto de Perinatología/Lab. Biología Celular, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
,
Edgar Estrella-Parra
3   Laboratorio de Fitoquímica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
,
Ruth Rincón-Heredia
4   División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
,
Abraham Madariaga-Mazón
5   Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
,
Edgar Flores-Soto
6   Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
,
Mario González-Meljem
1   División de Investigación Básica, Instituto Nacional de Geriatría (InGer), Mexico City, Mexico
,
Marco Cerbón
2   Unidad de Investigación en Reproducción Humana, Instituto de Perinatología/Lab. Biología Celular, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
,
Ricardo Reyes-Chilpa
5   Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
› Author Affiliations
Further Information

Publication History

received 13 April 2018
revised 02 July 2018

accepted 10 July 2018

Publication Date:
23 July 2018 (online)

Abstract

Mammea-type coumarins are a particular type of secondary metabolites biosynthesized by the tropical rainforest tree Calophyllum Brasiliense, which is distributed from South America to Mexico. Particularly, mammea A/BA and A/BB (alone or as a mixture) possess biological properties such as cytotoxic and antitumoral activities, however, most of its molecular targets remain unknown. In this context, novel bioinformatic approaches, such as network pharmacology analysis, have been successfully used in herbal medicine to accelerate research in this field, and the support of experimental validations has been shown to be quite robust. In the present study, we performed a network pharmacology analysis to assess the possible molecular biological networks that interact with mammea A/BA and A/BB. Moreover, we validated the most relevant networks experimentally in vitro on K562 cancer cells. The results of the network pharmacology analysis indicate that mammea A/BA and A/BB interacts with cell death, PI3K/AKT, MAPK, Ras, and cancer pathways. The in vitro model shows that mammea A/BA and A/BB induce apoptosis through the overexpression of the proapoptotic proteins Bax and Bak, disrupt the autophagic flux as seen by the cytosolic accumulation of LC3-II and p62, disrupting the mitochondria ultrastructure and concomitantly increase the intracellular calcium concentration. Additionally, docking analysis predicted a possible interaction with a rapamycin-binding domain of mTOR. In conclusion, we validated network pharmacology analysis and report, for the first time, that mammea A/BA and A/BB coumarins induce apoptosis through the inhibition of the autophagic flux, possibly interacting with mTOR.

* These two authors contributed equally to this work.


Supporting Information

 
  • References

  • 1 Katsori AM, Hadjipavlou-Litina D. Coumarin derivatives: an updated patent review (2012–2014). Expert Opin Ther Pat 2014; 24: 1323-1347
  • 2 Reyes-Chilpa R, Estrada-Muñiz E, Vega-Avila E, Abe F, Kinjo J, Hernández-Ortega S. Trypanocidal constituents in plants: 7. Mammea-type coumarins. Mem Inst Oswaldo Cruz 2008; 103: 431-436
  • 3 Brenzan MA, Nakamura CV, Prado Dias Filho B, Ueda-Nakamura T, Young MCM, Aparício Garcia Cortez D. Antileishmanial activity of crude extract and coumarin from Calophyllum brasiliense leaves against Leishmania amazonensis . Parasitol Res 2007; 101: 715-722
  • 4 Pires CTA, de L Scodro RB, Brenzan MA, Cortez DAG, Siqueira VLD, Cardozo-Filho L, Goncalves RM, Caleffi-Ferracioli KR, Cardoso RF. Anti-mycobacterium tuberculosis activity of Calophyllum brasiliense extracts obtained by supercritical fluid extraction and conventional techniques. Curr Pharm Biotechnol 2016; 17: 532-539
  • 5 Reyes-Chilpa R, Estrada-Muñiz E, Apan TR, Amekraz B, Aumelas A, Jankowski CK, Vázquez-Torres M. Cytotoxic effects of mammea type coumarins from Calophyllum brasiliense . Life Sci 2004; 75: 1635-1647
  • 6 Álvarez-Delgado C, Reyes-Chilpa R, Estrada-Muñiz E, Mendoza-Rodríguez CA, Quintero-Ruiz A, Solano J, Cerbón MA. Coumarin A/AA induces apoptosis-like cell death in HeLa cells mediated by the release of apoptosis-inducing factor. J Biochem Mol Toxicol 2009; 23: 263-272
  • 7 Katsori AM, Hadjipavlou-Litina D. Coumarin derivatives: an updated patent review (2012–2014). Expert Opin Ther Pat 2014; 24: 1323-1347
  • 8 Du L, Mahdi F, Jekabsons MB, Nagle DG, Zhou YD. Mammea E/BB, an isoprenylated dihydroxycoumarin protonophore that potently uncouples mitochondrial electron transport, disrupts hypoxic signaling in tumor cells. J Nat Prod 2010; 73: 1868-1872
  • 9 Morikawa T, Sueyoshi M, Chaipech S, Matsuda H, Nomura Y, Yabe M, Matsumoto T, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O. Suppressive effects of coumarins from Mammea siamensis on inducible nitric oxide synthase expression in RAW264.7 cells. Bioorg Med Chem 2012; 20: 4968-4977
  • 10 Brenzan MA, Santos AO, Nakamura CV, Filho BPD, Ueda-Nakamura T, Young MCM, Côrrea AG, Júnior JA, Morgado-Díaz JA, Cortez DAG. Effects of (−) mammea A/BB isolated from Calophyllum brasiliense leaves and derivatives on the mitochondrial membrane of Leishmania amazonensis . Phytomedicine 2012; 19: 223-230
  • 11 Ruiz-Marcial C, Reyes Chilpa R, Estrada E, Reyes-Esparza J, Fariña GG, Rodríguez-Fragoso L. Antiproliferative, the cytotoxic and antitumor activity of coumarins isolated from Calophyllum brasiliense . J Pharm Pharmacol 2007; 59: 719-725
  • 12 Gomez-Verjan JC, Estrella-Parra E, Vazquez-Martinez ER, Gonzalez-Sanchez I, Guerrero-Magos G, Mendoza-Villanueva D, Isus L, Alfaro A, Cerbón-Cervantes M, Aloy P, Reyes-Chilpa R. Risk assessment of Soulatrolide and Mammea (A/BA+A/BB) coumarins from Calophyllum brasiliense by a toxicogenomic and toxicological approach. Food Chem Toxicol 2016; 91: 117-129
  • 13 Zhao S, Iyengar R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 2012; 52: 505-521
  • 14 Huang J, Cheung F, Tan HY, Hong M, Wang N, Yang J, Feng Y, Zheng Q. Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology. Mol Med Rep 2017; 16: 4583-4592
  • 15 Pereira ASP, Bester MJ, Apostolides Z. Exploring the anti-proliferative activity of Pelargonium sidoides DC with in silico target identification and network pharmacology. Mol Divers 2017; 21: 809-820
  • 16 Zhao RL, He YM. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. J Ethnopharmacol 2018; 210: 287-295
  • 17 Yue SJ, Liu J, Feng WW, Zhang FL, Chen JX, Xin LT, Peng C, Guan HS, Wang CY, Yan D. System pharmacology-based dissection of the synergistic mechanism of Huangqi and Huanglian for Diabetes mellitus. Front Pharmacol 2017; 8: 694
  • 18 Zhang Y, Mao X, Su J, Geng Y, Guo R, Tang S, Li J, Xiao X, Xu H, Yang H. A network pharmacology-based strategy deciphers the underlying molecular mechanisms of Qixuehe Capsule in the treatment of menstrual disorders. Chin Med 2017; 12: 23
  • 19 Tang HC, Huang HJ, Lee CC, Chen CYC. Network pharmacology-based approach of novel traditional Chinese medicine formula for the treatment of acute skin inflammation in silico . Comput Biol Chem 2017; 71: 70-81
  • 20 Camberos-Luna L, Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Massieu L. The ketone body, β-hydroxybutyrate stimulates the autophagic flux and prevents neuronal death induced by glucose deprivation in cortical cultured neurons. Neurochem Res 2016; 41: 600-609
  • 21 Gertsch J. Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures. Planta Med 2011; 77: 1086-1098
  • 22 Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther 2018; 187: 45-60
  • 23 Yang J, Pi C, Wang G. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 2018; 103: 699-707
  • 24 Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 2015; 22: 995-1019
  • 25 Granatiero V, De Stefani D, Rizzuto R. Mitochondrial calcium handling in physiology and disease. Adv Exp Med Biol 2017; 982: 25-47
  • 26 Kim AD, Madduma Hewage SR, Piao MJ, Kang KA, Cho SJ, Hyun JW. Esculetin induces apoptosis in human colon cancer cells by inducing endoplasmic reticulum stress. Cell Biochem Funct 2015; 33: 487-494
  • 27 Lee YH, Cheng FY, Chiu HW, Tsai JC, Fang CY, Chen CW, Wang YJ. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 2014; 35: 4706-4715
  • 28 Kim WK, Pyee Y, Chung HJ, Park HJ, Hong JY, Son KH, Lee SK. Antitumor activity of spicatoside A by modulation of autophagy and apoptosis in human colorectal cancer cells. J Nat Prod 2016; 79: 1097-1104
  • 29 Liu H, Wang Y, Sharma A, Mao R, Jiang N, Dun B, She JX. Derivatives containing both coumarin and benzimidazole potently induce caspase-dependent apoptosis of cancer cells through inhibition of PI3K-AKT-mTOR signaling. Anticancer Drugs 2015; 26: 667-677
  • 30 Detsi A, Kontogiorgis C, Hadjipavlou-Litina D. Coumarin derivatives: an updated patent review (2015 – 2016). Expert Opin Ther Pat 2017; 27: 1201-1226
  • 31 Zhang YJ, Duan Y, Zheng XFS. Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov Today 2011; 16: 325-331
  • 32 Park D, Jeong H, Lee MN, Koh A, Kwon O, Yang YR, Noh J, Suh PG, Park H, Ryu SH. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci Rep 2016; 6: 21772
  • 33 Kist R, Caceres RA. New potential inhibitors of mTOR: a computational investigation integrating molecular docking, virtual screening, and molecular dynamics simulation. J Biomol Struct Dyn 2017; 35: 3555-3558
  • 34 Choi J, Chen J, Schreiber SL, Clardy J. Structure of the FKBP12-rapamycin complex interacting with binding domain of human FRAP. Science 1996; 273: 239-242
  • 35 Gomez-Verjan JC, Estrella-Parra EA, González-Sánchez I, Vázquez-Martínez ER, Vergara-Castañeda E, Cerbón MA, Reyes-Chilpa R. Molecular mechanisms involved in the cytotoxicity induced by coumarins from Calophyllum brasiliense in K562 leukemia cells. J Pharm Pharmacol 2014; 66: 1189-1195
  • 36 Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res 2011; 39: W492-W498
  • 37 Wang Z, Liang L, Yin Z, Lin J. Improving chemical similarity ensemble approach in target prediction. J Cheminform 2016; 8: 20
  • 38 Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014; 42: W32-W38
  • 39 Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 2015; 44: D380-D384
  • 40 Mattingly CJ, Colby GT, Forrest JN, Boyer JL. The Comparative Toxicogenomics Database (CTD). Environ Health Perspect 2003; 111: 793-795
  • 41 Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD, Morris Q. GeneMANIA prediction server 2013 update. Nucleic Acids Res 2013; 41: W115-W122
  • 42 Rivero-Segura NA, Flores-Soto E, García de la Cadena S, Coronado-Mares I, Gomez-Verjan JC, Ferreira DG, Cabrera-Reyes EA, Lopes LV, Massieu L, Cerbón M. Prolactin-induced neuroprotection against glutamate excitotoxicity is mediated by the reduction of [Ca2+]i overload and NF-κB activation. PLoS One 2017; 12: e0176910
  • 43 Vanoye-Carlo A, Morales T, Ramos E, Mendoza-Rodríguez A, Cerbón M. Neuroprotective effects of lactation against kainic acid treatment in the dorsal hippocampus of the rat. Horm Behav 2008; 53: 112-123
  • 44 Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Castro-Obregón S, Massieu L. Autophagy fails to prevent glucose deprivation/glucose reintroduction-induced neuronal death due to calpain-mediated lysosomal dysfunction in cortical neurons. Cell Death Dis 2017; 8: e2911
  • 45 Han W, Sun J, Feng L, Wang K, Li D, Pan Q, Chen Y, Jin W, Wang X, Pan H, Jin H. Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells. PLoS One 2011; 6: e28491