CC BY-NC-ND 4.0 · Ultrasound Int Open 2019; 05(01): E20-E26
DOI: 10.1055/a-0656-5430
Rapid Communication
Eigentümer und Copyright ©Georg Thieme Verlag KG 2018

Pediatric Transthoracic Cardiac Vector Flow Imaging – A Preliminary Pictorial Study

Kristoffer Lindskov Hansen
1   Department of Diagnostic Radiology, Copenhagen University Hospital, Copenhagen, Denmark
,
Klaus Juul
2   Department of Pediatric Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
,
Hasse Møller-Sørensen
3   Department of Cardiothoracic Anesthesiology, Copenhagen University Hospital, Copenhagen, Denmark
,
Jens C. Nilsson
3   Department of Cardiothoracic Anesthesiology, Copenhagen University Hospital, Copenhagen, Denmark
,
Jørgen Arendt Jensen
4   Center for Fast Ultrasound Imaging, Technical University of Denmark, DTU Elektro, Lyngby, Denmark
,
Michael Bachmann Nielsen
1   Department of Diagnostic Radiology, Copenhagen University Hospital, Copenhagen, Denmark
› Author Affiliations
Further Information

Publication History

received 12 March 2018
revised 15 May 2018

accepted 01 July 2018

Publication Date:
21 December 2018 (online)

Abstract

Purpose Conventional pediatric echocardiography is crucial for diagnosing congenital heart disease (CHD), but the technique is impaired by angle dependency. Vector flow imaging (VFI) is an angle-independent noninvasive ultrasound alternative for blood flow assessment and can assess complex flow patterns not visible on conventional Doppler ultrasound.

Materials and Methods 12 healthy newborns and 3 infants with CHD were examined with transthoracic cardiac VFI using a conventional ultrasound scanner and a linear array.

Results VFI examinations revealed common cardiac flow patterns among the healthy newborns, and flow changes among the infants with CHD not previously reported with conventional echocardiography.

Conclusion For assessment of cardiac flow in the normal and diseased pediatric heart, VFI may provide additional information compared to conventional echocardiography and become a useful diagnostic tool.

 
  • References

  • 1 van der Linde D, Konings EE, Slager MA. et al. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J Am Coll Cardiol. 2011; 58: 2241-2247
  • 2 Bharucha T, Mertens L. Recent advances in pediatric echocardiography. Expert Rev Cardiovasc Ther 2013; 11: 31-47
  • 3 Deeg KH. Echocardiographic differential diagnosis of the cyanotic newborn. Ultraschall in Med 2015; 36: 104-118
  • 4 Berg A, Greve G. Trends in pediatric imaging: Ultrasound. Acta Radiol. 2013; 54: 1096-1105
  • 5 Evans DH, McDicken N, Skidmore R. et al. Doppler ultrasound, Physics. Instrumentation and Clinical Applications. New York: John Wiley & Sons; 1989
  • 6 Fox MD. Multiple crossed-beam ultrasound Doppler velocimetry. IEEE Trans Son Ultrason 1978; 25: 281-286
  • 7 Trahey GE, Allison JW, Ramm OT. Angle independent ultrasonic detection of blood flow. IEEE Trans Biomed Eng. 1987; 34: 965-967
  • 8 Jensen JA, Munk P. A new method for estimation of velocity vectors. IEEE Trans Ultrason Ferroelectr Freq Control 1998; 45: 837-851
  • 9 Hansen KL, Moller-Sorensen H, Kjaergaard J. et al. Aortic Valve Stenosis Increases Helical Flow and Flow Complexity: A Study of Intra-operative Cardiac Vector Flow Imaging. Ultrasound Med Biol. 2017; 43: 1607-1617
  • 10 Hansen KL, Moller-Sorensen H, Kjaergaard J. et al. Analysis of Systolic Backflow and Secondary Helical Blood Flow in the Ascending Aorta Using Vector Flow Imaging. Ultrasound Med Biol. 2016; 42: 899-908
  • 11 Hansen KL, Moller-Sorensen H, Kjaergaard J. et al. Intra-operative Vector Flow Imaging Using Ultrasound of the Ascending Aorta among 40 Patients with Normal, Stenotic and Replaced Aortic Valves. Ultrasound Med Biol. 2016; 42: 2414-2422
  • 12 Hansen KL, Moller-Sorensen H, Kjaergaard J. et al. Vector Flow Imaging Compared with Conventional Doppler Ultrasound and Thermodilution for Estimation of Blood Flow in the Ascending Aorta. Ultrason Imaging. 2017; 39: 3-18
  • 13 Hansen KL, Moller-Sorensen H, Pedersen MM. et al. First Report on Intraoperative Vector Flow Imaging of the Heart among Patients with Healthy and Diseased Aortic Valves. Ultrasonics 2015; 56: 243-250
  • 14 Hansen KL, Pedersen MM, Moller-Sorensen H. et al. Intraoperative cardiac ultrasound examination using vector flow imaging. Ultrason Imaging. 2013; 35: 318-332
  • 15 Jensen JA. A new estimator for vector velocity estimation. IEEE Trans Ultrason Ferroelec Freq Contr 2001; 48: 886-894
  • 16 Dean WR. Note on the motion of fluid in a curved pipe. Philos Mag. 1927; 4: 208-223
  • 17 Kilner PJ, Yang GZ, Wilkes AJ. et al. Asymmetric redirection of flow through the heart. Nature 2000; 404: 759-761
  • 18 Elbaz MS, Calkoen EE, Westenberg JJ. et al. Vortex flow during early and late left ventricular filling in normal subjects: Quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J Cardiovasc Magn Reson. 2014; 16: 1-12
  • 19 Akiyama K, Maeda S, Matsuyama T. et al. Vector flow mapping analysis of left ventricular energetic performance in healthy adult volunteers. BMC Cardiovasc Disord 2017; DOI: 10.1186/s12872-016-0444-7.
  • 20 Gabbour M, Schnell S, Jarvis K. et al. 4-D flow magnetic resonance imaging: Blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography. Pediatr Radiol. 2015; 45: 804-813
  • 21 Lawley CM, Broadhouse KM, Callaghan FM. et al. 4D flow magnetic resonance imaging: Role in pediatric congenital heart disease. Asian Cardiovasc Thorac Ann 2017; DOI: 10.1177/0218492317694248.
  • 22 Prakash A, Powell AJ, Geva T. Multimodality noninvasive imaging for assessment of congenital heart disease. Circ Cardiovasc Imaging 2010; 3: 112-125
  • 23 Fadnes S, Nyrnes SA, Torp H. et al. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking. Ultrasound Med Biol. 2014; 40: 2379-2391
  • 24 Dijkema EJ, Leiner T, Grotenhuis HB. Diagnosis, imaging and clinical management of aortic coarctation. Heart 2017; DOI: 10.1136/heartjnl-2017-311173.
  • 25 Swamy P, Bharadwaj A, Varadarajan P. et al. Echocardiographic evaluation of tetralogy of Fallot. Echocardiography 2015; 32: 148-156
  • 26 Pihl MJ, Marcher J, Jensen JA. Phased-array vector velocity estimation using transverse oscillations. IEEE Trans Ultrason Ferroelect Freq Control 2012; 59: 2662-2675
  • 27 Jensen JA, Brandt AH, Nielsen MB. Convex array vector velocity imaging using transverse oscillation and its optimization. IEEE Trans Ultrason Ferroelect Freq Control 2015; 62: 2043-2053
  • 28 Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011; DOI: 10.1186/532-429X-13-7.
  • 29 Holbek S, Ewertsen C, Bouzari H. et al. Ultrasonic 3-D Vector Flow Method for Quantitative In Vivo Peak Velocity and Flow Rate Estimation. IEEE Trans Ultrason Ferroelectr Freq Control 2017; 64: 544-554