Subscribe to RSS
DOI: 10.1055/a-0651-0424
Intrauterine Fetal Growth Delay During Late Pregnancy After Maternal Gastric Bypass Surgery
Intrauterine Wachstumsverzögerung in der Spätschwangerschaft nach maternalem MagenbypassPublication History
19 February 2018
26 June 2018
Publication Date:
25 October 2018 (online)
Abstract
Purpose To investigate intrauterine fetal growth development and birth anthropometry of fetuses conceived after maternal gastric bypass surgery.
Materials and Methods Longitudinal cohort study describing longitudinal growth estimated by ultrasound on 43 singleton pregnancies after gastric bypass compared to 43 BMI-matched controls.
Results In fetuses after maternal gastric bypass surgery, growth percentiles decreased markedly from the beginning of the second trimester until the end of the third trimester (decrease of 3.1 fetal abdomen circumference percentiles (95 %CI 0.9–5.3, p = 0.007) per four gestational weeks). While in the second trimester, fetal anthropometric measures did not differ between the groups, the mean abdomen circumference percentiles appeared significantly smaller during the third trimester in offspring of mothers after gastric bypass (mean difference 25.1 percentiles, p < 0.001). Similar tendencies have been observed in estimated fetal weight resulting in significantly more SGA offspring at delivery in the gastric bypass group. In children born after maternal gastric bypass surgery, weight percentiles (32.12th vs. 55.86th percentile, p < 0.001) as well as placental weight (525.2 g vs. 635.7 g, p < 0.001) were significantly reduced compared to controls.
Conclusion In fetuses conceived after maternal gastric bypass, intrauterine fetal growth distinctively declined in the second and third trimester, most prominently observed in fetal abdomen circumferences. Birth weight and placental weight at birth was significantly lower compared to BMI-matched controls, possibly due to altered maternal metabolic factors and comparable to mothers experiencing chronic hunger episodes.
Zusammenfassung
Ziel Das intrauterine Wachstum von Feten in Schwangerschaften nach maternaler Magenbypass-Operation zu untersuchen.
Material und Methode Longitudinale Kohortenstudie an 43 Einlings-Schwangerschaften nach maternalem Magenbypass und 43 BMI-gematchten Kontrollen. Das longitudinale fetale Wachstum wurde anhand von wiederholten Ultraschallmessungen beobachtet.
Ergebnisse In Feten nach maternalem Magenbypass konnte eine deutliche Abflachung der Wachstums-Perzentilen vom Anfang des zweiten Trimenons bis zum Ende des dritten Trimenons beobachtet werden (Abfall von 3,1 fetalen Abdomen-Umfang-Perzentilen (95 % CI 0,9–5,3, p = 0,007) innerhalb von 4 Schwangerschaftswochen). Während sich im zweiten Trimenon vergleichbare fetale Messwerte in beiden Gruppen zeigten, hatten Feten nach maternalem Magenbypass im dritten Trimenon signifikant kleinere Abdomen-Umfänge verglichen mit Kontrollen (durchschnittliche Differenz 25,1 Perzentilen, p < 0,001). Vergleichbare Resultate konnten bezüglich fetalem Schätzgewicht beobachtet werden mit daraus resultierenden signifikant häufigeren SGA-Neugeborenen nach maternalem Magenbypass. Neugeborene nach Magenbypass hatten signifikant erniedrigte Geburtsgewichts-Perzentilen (32,12. vs. 55,86. Perzentile, p < 0,001) sowie ein signifikant erniedrigtes durchschnittliches Plazentagewicht (525,2 g vs. 635,7 g, p < 0,001).
Schlussfolgerung In Feten nach maternalem Magenbypass konnte eine deutliche Abnahme des intrauterinen Wachstums im zweiten und dritten Trimenon beobachtet werden – am ausgeprägtesten im Hinblick auf fetale Abdomen-Umfänge. Das Geburts- und Plazentagewicht war signifikant erniedrigt verglichen mit BMI-gematchten Kontrollen, möglicherweise aufgrund von maternalen metabolischen Faktoren und vergleichbar mit an chronischem Hunger leidenden Müttern.
-
References
- 1 Johansson S, Villamor E, Altman M. et al. Maternal overweight and obesity in early pregnancy and risk of infant mortality: a population based cohort study in Sweden. Bmj 2014; 349: g6572
- 2 Mingrone G, Panunzi S, De Gaetano A. et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 2012; 366: 1577-1585
- 3 Edison E, Whyte M, van Vlymen J. et al. Bariatric Surgery in Obese Women of Reproductive Age Improves Conditions That Underlie Fertility and Pregnancy Outcomes: Retrospective Cohort Study of UK National Bariatric Surgery Registry (NBSR). Obesity surgery 2016; 26: 2837-2842
- 4 Johansson K, Cnattingius S, Naslund I. et al. Outcomes of pregnancy after bariatric surgery. N Engl J Med 2015; 372: 814-824
- 5 Gascoin G, Gerard M, Salle A. et al. Risk of low birth weight and micronutrient deficiencies in neonates from mothers after gastric bypass: a case control study. Surg Obes Relat Dis 2017; 13: 1384-1391
- 6 Feichtinger M, Stopp T, Hofmann S. et al. Altered glucose profiles and risk for hypoglycaemia during oral glucose tolerance testing in pregnancies after gastric bypass surgery. Diabetologia 2017; 60: 153-157
- 7 Hadlock FP, Deter RL, Harrist RB. et al. Estimating fetal age: computer-assisted analysis of multiple fetal growth parameters. Radiology 1984; 152: 497-501
- 8 Hadlock FP, Harrist RB, Sharman RS. et al. Estimation of fetal weight with the use of head, body, and femur measurements--a prospective study. Am J Obstet Gynecol 1985; 151: 333-337
- 9 R-Core-Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017
- 10 Treasure JL, Russell GF. Intrauterine growth and neonatal weight gain in babies of women with anorexia nervosa. British medical journal 1988; 296: 1038
- 11 Lin CC, Santolaya-Forgas J. Current concepts of fetal growth restriction: part I. Causes, classification, and pathophysiology. Obstet Gynecol 1998; 92: 1044-1055
- 12 Kavitha JV, Rosario FJ, Nijland MJ. et al. Down-regulation of placental mTOR, insulin/IGF-I signaling, and nutrient transporters in response to maternal nutrient restriction in the baboon. FASEB J 2014; 28: 1294-1305
- 13 Abu Shehab M, Damerill I, Shen T. et al. Liver mTOR controls IGF-I bioavailability by regulation of protein kinase CK2 and IGFBP-1 phosphorylation in fetal growth restriction. Endocrinology 2014; 155: 1327-1339
- 14 Pantham P, Rosario FJ, Weintraub ST. et al. Down-Regulation of Placental Transport of Amino Acids Precedes the Development of Intrauterine Growth Restriction in Maternal Nutrient Restricted Baboons. Biol Reprod 2016; 95: 98
- 15 Jansson T, Powell TL. Role of placental nutrient sensing in developmental programming. Clin Obstet Gynecol 2013; 56: 591-601
- 16 Stein Z, Susser M. The Dutch famine, 1944–1945, and the reproductive process. II. Interrelations of caloric rations and six indices at birth. Pediatr Res 1975; 9: 76-83
- 17 Gobl CS, Bozkurt L, Tura A. et al. Assessment of glucose regulation in pregnancy after gastric bypass surgery. Diabetologia 2017; DOI: 10.1007/s00125-017-4437-6.
- 18 Bienstock JL, Holcroft CJ, Althaus J. Small fetal abdominal circumference in the second trimester and subsequent low maternal plasma glucose after a glucose challenge test is associated with the delivery of a small-for-gestational age neonate. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 2008; 31: 517-519
- 19 Langer O, Damus K, Maiman M. et al. A link between relative hypoglycemia-hypoinsulinemia during oral glucose tolerance tests and intrauterine growth retardation. Am J Obstet Gynecol 1986; 155: 711-716
- 20 Bonis C, Lorenzini F, Bertrand M. et al. Glucose Profiles in Pregnant Women After a Gastric Bypass: Findings from Continuous Glucose Monitoring. Obesity surgery 2016; 26: 2150-2155
- 21 Chevrot A, Kayem G, Coupaye M. et al. Impact of bariatric surgery on fetal growth restriction: experience of a perinatal and bariatric surgery center. Am J Obstet Gynecol 2016; 214: 655 e651-657
- 22 Marsk R, Jonas E, Rasmussen F. et al. Nationwide cohort study of post-gastric bypass hypoglycaemia including 5040 patients undergoing surgery for obesity in 1986–2006 in Sweden. Diabetologia 2010; 53: 2307-2311
- 23 Parent B, Martopullo I, Weiss NS. et al. Bariatric Surgery in Women of Childbearing Age, Timing Between an Operation and Birth, and Associated Perinatal Complications. JAMA Surg 2017; 152: 1-8
- 24 Barker DJ. The fetal and infant origins of adult disease. Bmj 1990; 301: 1111
- 25 Tobi EW, Goeman JJ, Monajemi R. et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nature communications 2014; 5: 5592
- 26 Leger J, Levy-Marchal C, Bloch J. et al. Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: regional cohort study. Bmj 1997; 315: 341-347
- 27 Strauss RS. Adult functional outcome of those born small for gestational age: twenty-six-year follow-up of the 1970 British Birth Cohort. JAMA: the journal of the American Medical Association 2000; 283: 625-632
- 28 Kral JG, Biron S, Simard S. et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 2006; 118: e1644-e1649
- 29 Smith J, Cianflone K, Biron S. et al. Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J Clin Endocrinol Metab 2009; 94: 4275-4283
- 30 Guenard F, Deshaies Y, Cianflone K. et al. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci U S A 2013; 110: 11439-11444