Psychother Psychosom Med Psychol 2019; 69(07): 266-274
DOI: 10.1055/a-0634-6625
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Genetische Grundlagen der Posttraumatischen Belastungsstörung (PTBS)

Genetics of Posttraumatic Stress Disorder (PTSD)
Elisabeth M. Weiss
1   Abteilung für Biologische Psychologie, Institut für Psychologie, Graz, Österreich
,
Walther Parson
2   Institut für Gerichtliche Medizin, Medizinische Universität Innsbruck, Österreich
,
Harald Niederstätter
2   Institut für Gerichtliche Medizin, Medizinische Universität Innsbruck, Österreich
,
Josef Marksteiner
3   Abteilung für Psychiatrie und Psychotherapie A, Landeskrankenhaus Hall, Österreich
,
Astrid Lampe
4   Dept. für Psychiatrie und Psychotherapie, Medizinische Universität Innsbruck, Österreich
› Author Affiliations
Further Information

Publication History

eingereicht 10 January 2018

akzeptiert 05 May 2018

Publication Date:
19 July 2018 (online)

Zusammenfassung

Bei der Posttraumatischen Belastungsstörung (PTBS) handelt es sich um eine psychische Erkrankung, die nach außergewöhnlich bedrohlichen Situationen (Traumata) auftreten kann und sich durch eine hohe Komorbidität auszeichnet. Jedoch gibt es selbst bei Personen mit dem gleichen traumatischen Erlebnis eine hohe interindividuelle Variabilität bezüglich des PTBS Risikos. Daher liegt die Vermutung nahe, dass biologische Korrelate wie genetische und epigenetische Einflüsse als Risikofaktoren für die Entwicklung einer PTBS eine Rolle spielen können. Im vorliegenden Übersichtsartikel soll der aktuelle Erkenntnisstand der genetischen Forschung bei PTBS vorgestellt werden, wobei der Schwerpunkt auf genetischen Befunden aus Kandidatengen-basierten Assoziationsstudien des monoaminergen Systems und der endokrinen Stressachse liegt. Des Weiteren werden Ergebnisse aus Genom-weiten Assoziationsstudien berichtet und auf die Rolle von Genen als Moderatoren der Effekte von Kindheitstraumen anhand von Gen-Umwelt-Interaktionsstudien und epigenetische Untersuchungen eingegangen. Abschließend wird ein kurzer Ausblick auf die aktuelle Forschung im Bereich der Pharmakogenetik gegeben.

Abstract

Post-traumatic stress disorder (PTSD) is a mental disorder following a severe traumatic experience and is characterized by high rates of comorbidity with related psychiatric disorders. However, even for individuals experiencing the same trauma, there is considerable inter-individual variability in the risk of PTSD, and this is largely thought to be determined by biological processes, such as genetic predisposition and epigenetic mechanism. In this review we will summarize recent research on genetics of PTSD, primarily focusing on candidate gene-association studies, targeting on functional genetic variants in the monoaminergic system and the hypothalamic-pituitary-adrenal (HPA) axis. In addition, results from recent genome-wide association studies (GWAS) will be reported and we will highlight the interplay of genetic factors with environmental factors, based on evidence from gene-environment interaction analysis and studies on the epigenetic regulation of PTSD. Finally, we will provide a brief outlook towards the potential and perspectives of pharmaco-genetic studies.

 
  • Literatur

  • 1 Resick PA, Maercker A. Stress und Trauma. Grundlagen der Psychotraumatologie. Bern: Huber; 2003
  • 2 Kessler RC, Sonnega A, Bromet E. et al. Posttraumatic Stress Disorder in the National Comorbidity Survey. Arch Gen Psychiat 1995; 52: 1048
  • 3 Maercker A, Forstmeier S, Wagner B. et al. Posttraumatische Belastungsstörungen in Deutschland Ergebnisse einer gesamtdeutschen epidemiologischen Untersuchung. Nervenarzt 2008; 79: 577-586
  • 4 Flatten G, Gast U, Hofmann A. et al S3 – Leitlinie Posttraumatische Belastungsstörung. Trauma & Gewalt 2011; 3: 202-210
  • 5 Falkai P, Wittchen HU. Diagnostisches und statistisches Manual psychischer Störungen. DSM-5. Göttingen: Hogrefe; 2015
  • 6 Santiago PN, Ursano RJ, Gray CL. et al. A systematic review of PTSD prevalence and trajectories in DSM-5 defined trauma exposed populations: intentional and non-intentional traumatic events. PLoS One 2013; 8: e59236
  • 7 Brewin CR, Andrews B, Valentine JD. Meta-Analysis of Risk Factors for Posttraumatic Stress Disorder in Trauma-Exposed Adults. J Consult Clin Psych 2000; 68: 748-766
  • 8 Yehuda R, Hoge CW, McFarlane AC. et al. Post-traumatic stress disorder. Nat Rev Dis Primers 2015; 1: 1-22
  • 9 Kilpatrick DG, Koenen KC, Ruggiero KJ. et al. The Serotonin Transporter Genotype and Social Support and Moderation of Posttraumatic Stress Disorder and Depression in Hurrican- Exposed Adults. Am J Psychiat 2007; 164: 1693-1699
  • 10 Xie P, Kranzler HR, Poling J. et al. Interactive Effect of Stressful Life Events and the Serotonin Transporter 5-HTTLPR Genotype on Posttraumatic Stress Disorder Diagnosis in 2 Independent Populations. Arch Gen Psychiat 2009; 66: 1201-1209
  • 11 Xie P, Kranzler HR, Farrer L. et al. Serotonin Transporter 5-HTTLPR Genotype Moderates the Effects of Childhood Adversity on Posttraumatic Stress Disorder Risk: A Replication Study. Am J Med Genet B 2012; 159: 644-652
  • 12 Kessler RC, Berglund P, Demler O. et al. Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Arch Gen Psychiat 2005; 62: 593-602
  • 13 Sherin JE, Nemeroff CB. Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci 2011; 13: 263-278
  • 14 Almli LM, Fani N, Smith AK. et al. Genetic approaches to understanding post-traumatic stress disorder. Int J Neuropsychoph 2014; 17: 355-370
  • 15 Banerjee SB, Morrison FG, Ressler KJ. Genetic approaches for the study of PTSD: Advances and challenges. Neurosci Lett 2017; 649: 139-146
  • 16 Brückl TM, Binder EB. Folgen früher Traumatisierung aus neurobiologischer Sicht. Forens Psychiatr Psychol Kriminol 2017; 11: 118-132
  • 17 Ryan J, Chaudieu I, Ancelin ML. et al. Biological underpinnings of trauma and post-traumatic stress disorder: focusing on genetics and epigenetics. Epigenomics 2016; 8: 1553-1569
  • 18 Voisey J, Young RM, Lawford BR. et al. Progress towards understanding the genetics of posttraumatic stress disorder. J Anxiety Disord 2014; 28: 873-883
  • 19 Yehuda R, Halligan SL, Bierer LM. Relationship of parental trauma exposure and PTSD to PTSD, depressive and anxiety disorders in offspring. J Psychiat Res 2001; 35: 261-270
  • 20 Stein MB, Jang KL, Taylor S. et al. Genetic and Environmental Influences on Trauma Exposure and Posttraumatic Stress Disorder Symptoms: A Twin Study. Am J of Psychiat 2002; 159: 1675-1681
  • 21 Koenen KC, Harley R, Lyons MJ. et al. A twin registry study of familial and individual risk factors for trauma exposure and posttraumatic stress disorder. J Nerv Ment Dis 2002; 190: 209-218
  • 22 Sartor CE, Grant JD, Lynskey MT. et al. Common heritable contributions to low-risk trauma, high-risk trauma, posttraumatic stress disorder, and major depression. Arch Gen Psychiat 2012; 69: 293-299
  • 23 Skelton K, Ressler KJ, Norrholm SD. et al. PTSD and gene variants: New pathways and new thinking. Neuropharmacol 2012; 62: 628-637
  • 24 Afifi TO, Asmundson GJ, Taylor S. et al. The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: a review of twin studies. Clin Psychol Rev 2010; 30: 101-112
  • 25 Krystal JH, Neumeister A. Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Res 2009; 1293: 13-23
  • 26 Caspi A, Sugden K, Moffitt TE. et al. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science 2003; 301: 386-389
  • 27 Hu X, Oroszi G, Chun J. et al. An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcohol Clin Exp Res 2005; 29: 8-16
  • 28 Heils A, Teufel A, Petri S. et al. Allelic variation of human serotonin transporter gene expression. J Neurochem 1996; 66: 2621-2624
  • 29 Hu X-Z, Lipsky RH, Zhu G. et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet 2006; 78: 815-826
  • 30 Thakur GA, Joober R, Brunet A. Development and persistence of posttraumatic stress disorder and the 5-HTTLPR polymorphism. J Trauma Stress 2009; 22: 240-243
  • 31 Navarro-Mateu F, Escámez T, Koenen KC. et al. Meta-Analyses of the 5-HTTLPR Polymorphisms and Post-Traumatic Stress Disorder. Plos One 2013; 8: e66227
  • 32 Gressier F, Calati R, Balestri M. et al. The 5-HTTLPR polymorphism and posttraumatic stress disorder: a meta-analysis. J Trauma Stress 2013; 26: 645-653
  • 33 Koenen KC, Amstadter AB, Nugent NR. Gene-environment Interaction in Posttraumatic Stress Disorder: An Update. J Trauma Stress 2009; 22: 416-426
  • 34 Pietrzak RH, Galea S, Southwick SM. et al. Examining the relation between the serotonin transporter 5-HTTPLR genotype x trauma exposure interaction on a contemporary phenotypic model of posttraumatic stress symptomatology: A pilot study. J Affect Disorders 2013; 148: 123-128
  • 35 Scharinger C, Rabl U, Sitte HH. et al. Imaging genetics of mood disorders. Neuroimage 2010; 53: 810-821
  • 36 Munafò MR, Brown SM, Hariri AR. Serotonin Transporter (5-HTTLPR) Genotype and Amygdala Activation: A Meta-Analysis. Biol Psychiat 2008; 63: 852-857
  • 37 Murphy SE, Norbury R, Godlewska BR. et al. The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: a meta-analysis. Mol Psychiatry 2013; 18: 512-520
  • 38 Papousek I, Reiser EM, Schulter G. et al. Serotonin transporter genotype (5-HTTLPR) and electrocortical responses indicating the sensitivity to negative emotional cues. Emotion 2013; 13: 1173-1181
  • 39 Mushtaq D, Ali A, Margoob MA. et al. Association between serotonin transporter gene promoter-region polymorphism and 4- and 12-week treatment response to sertraline in posttraumatic stress disorder. J Affect Disorders 2012; 136: 955-962
  • 40 Bryant RA, Felmingham KL, Falconer EM. et al. Preliminary evidence of the short allele of the serotonin transporter gene predicting poor response to cognitive behavior therapy in posttraumatic stress disorder. Biol Psychiat 2010; 67: 1217-1219
  • 41 Goenjian AK, Noble EP, Steinberg AM. et al. Association of COMT and TPH-2 genes with DSM-5 based PTSD symptoms. J Affect Disorders 2015; 172: 472-478
  • 42 Lawford BR, Barnes M, Swagell CD. et al. DRD2/ANKK1 Taq1A (rs 1800497 C>T) genotypes are associated with susceptibility to second generation antipsychotic-induced akathisia. J Psychopharmacol 2013; 27: 343-348
  • 43 Vandenbergh DJ, Persico AM, Hawkins AL. et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 1992; 14: 1104-1106
  • 44 VanNess SH, Owens MJ, Kilts CD. The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 2005; 6: 55
  • 45 Chen J, Lipska BK, Halim N. et al. Functional Analysis of Genetic Variation in Catechol-O-Methyltransferase (COMT): Effects on mRNA, Protein, and Enzyme Activity in Postmortem Human Brain. Am J Hum Genet 2004; 75: 807-821
  • 46 Li L, Bao Y, He S. et al. The Association Between Genetic Variants in the Dopaminergic System and Posttraumatic Stress Disorder: A Meta-Analysis. Medicine 2016; 95: e3074
  • 47 Yehuda R. Status of glucocorticoid alterations in post-traumatic stress disorder. Ann N Y Acad Sci 2009; 1179: 56-69
  • 48 De Bellis MD, Zisk A. The biological effects of childhood trauma. Child Adolesc Psychiatr Clin N Am 2014; 23: 185-222
  • 49 Nemeroff CB. Paradise lost: the neurobiological and clinical consequences of child abuse and neglect. Neuron 2016; 89: 892-909
  • 50 Binder EB, Bradley RG, Liu W. et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 2008; 299: 1291-1305
  • 51 Sarapas C, Cai G, Bierer LM. et al. Genetic markers for PTSD risk and resilience among survivors of the World Trade Center attacks. Dis Markers 2011; 30: 101-110
  • 52 Wilker S, Pfeiffer A, Kolassa S. et al. The role of FKBP5 genotype in moderating long-term effectiveness of exposure-based psychotherapy for posttraumatic stress disorder. Transl Psychiat 2014; 4: e403
  • 53 Ressler KJ, Mercer KB, Bradley B. et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 2011; 470: 492-497
  • 54 Hammack SE, Cheung J, Rhodes KM. et al. Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrino 2009; 34: 833-843
  • 55 Stroth N, Holighaus Y, Ait-Ali D. et al. PACAP: a master regulator of neuroendocrine stress circuits and the cellular stress response. Ann. NY Acad. Sci 2011; 1220: 49-59
  • 56 Dempfle A, Scherag A, Hein R. et al. Gen-environment interactions for complex traits: Definitions, methodological requirements and challenges. Eur J Hum Genet 2008; 16: 1164-1172
  • 57 Luan JA, Wong MY, Day NE. et al. Sample size determination for studies on gene-environment interaction. Int J Epidemiol 2001; 30: 1035-1040
  • 58 Duncan LE, Keller MC. A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiat 2011; 168: 1041-1049
  • 59 Nievergelt CM, Ashley-Koch AE, Dalvie S. et al. Genomic Approaches to Posttraumatic Stress Disorder: The Psychiatric Genomic Consortium Initiative. Biol Psychiat 2018; 83: 831-839
  • 60 Duncan LE, Ratanatharathorn A, Aiello AE. et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol Psychiat 2018; 23: 666-673
  • 61 Sumner JA, Duncan LE, Wolf EJ. et al. Letter to the Editor: Posttraumatic stress disorder has genetic overlap with cardiometabolic traits. Psychol Med. 2017; 47: 2036-2039
  • 62 Caspi A, McClay J, Moffitt T. et al. Role of genotype in the cycle of violence in maltreated children. Science 2002; 297: 851-854
  • 63 Byrd AL, Manuck SB. MAOA, childhood maltreatment, and antisocial behavior: Meta-analysis of a gene-environment interaction. Biol Psychiat 2014; 75: 9-17
  • 64 Nilsson KW, Comasco E, Hodgins S. et al. Genotypes do not confer risk for delinquency but rather alter susceptibility to positive and negative environmental factors: Gene-environment interactions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR. Int J Neuropsychopharmacol 2015; 18: 1-46
  • 65 Banducci AN, Gomes M, MacPherson L. et al. A Preliminary Examination of the Relationship between the 5-HTTLPR and Childhood Emotional Abuse on Depressive Symptoms in 10-12-Year-Old Youth. Psycholo Trauma-US 2014; 6: 1-7
  • 66 Karg K, Burmeister M, Shedden K. et al. The Serotonin Transporter Promoter Variant (5-HTTLPR), Stress, and Depression Meta-Analysis Revisited: Evidence of Genetic Moderation. Arch Gen Psychiat 2011; 68: 444-454
  • 67 Grabe HJ, Spitzer C, Schwahn C. et al Serotonin Transporter Gene (SLC6A4) Promoter Polymorphisms and the Susceptibility to Posttraumatic Stress Disorder in the General Population. Am J Psychiat 2009; 166: 926-933
  • 68 Kolassa IT, Ertl V, Eckart C. et al. Association Study of Trauma Load and SLC6A4 Promoter Polymorphism in Posttraumatic Stress Disorder: Evidence From Survivors of the Rwandan Genocide. J Clin Psychiat 2010; 71: 543-547
  • 69 Munafò MR, Durrant C, Lewis G. et al. GeneEnvironment Interactions at the Serotonin Transporter Locus. Biol Psychiat 2009; 65: 211-219
  • 70 Risch N, Herrell R, Lehner T. et al. Interaction Between the Serotonin Transporter Gene (5-HTTLPR), Stressful Life Events, and Risk of Depression. J Amer Med Assoc 2009; 301: 2462-2471
  • 71 Zhao M, Yang J, Wang W. et al. Meta-analysis of the interaction between serotonin transporter promoter variant, stress, and posttraumatic stress disorder. Sci Rep 2017; 7: 16532
  • 72 Terock J, Van der Auwera S, Janowitz D. et al. Childhood Trauma and Functional Variants of 5-HTTLPR Are Independently Associated with Alexithymia in 5,283 Subjects from the General Population. Psychother Psychosom 2018; 87: 58-61
  • 73 Karg K, Sen S. 19 Gene × Environment Interaction Models in PsychiatricGenetics. Curr Top Behav Neurosci 2012; 12: 441-462
  • 74 Clark R, DeYoung CG, Sponheim SR. et al. Predicting post-traumatic stress disorder in veterans: Interaction of traumatic load with COMT gene variation. J Psychiat Res 2013; 47: 1849-1856
  • 75 Kolassa IT, Kolassa S, Ertl V. et al. The risk of posttraumatic stress disorder after trauma depends on traumatic load and the catechol-o-methyltransferase Val(158)Met polymorphism. Biol Psychiat 2010; 67: 304-308
  • 76 Valente NLM, Vallada H, Cordeiro Q. et al. Catechol-O-methyltransferase (COMT) val158met polymorphism as a risk factor for PTSD after urban violence. J Mol Neurosci 2011; 43: 516-523
  • 77 Zannas AS, Binder EB. Gene-environment interactions at the FKBP5 locus: sensitive periods, mechanisms and pleiotropism. Genes Brain Behav. 2014; 13: 25-37
  • 78 Zannas AS, Wiechmann T, Gassen NC. et al. Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacol 2016; 41: 261-274
  • 79 Zimmermann P, Brückl T, Nocon A. et al. Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: results from a 10-year prospective community study. Am J Psychiat 2011; 168: 1107-1116
  • 80 Xie P, Kranzler HR, Poling J. et al. Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacol 2010; 35: 1684-1692
  • 81 Mustapic M, Pivac N, Kozaric-Kovacic D. et al. Dopamine beta-hydroxylase (DBH) activity and -1021C/T polymorphism of DBH gene in combat-related post-traumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 1087-1089
  • 82 Amstadter AB, Koenen KC, Ruggiero KJ. et al. Variant in RGS2 moderates posttraumatic stress symptoms following potentially traumatic event exposure. J Anxiety Disord 2009; 23: 369-373
  • 83 Nelson EC, Agrawal A, Pergadia ML. et al. Association of childhood trauma exposure and GABRA2 polymorphisms with risk of posttraumatic stress disorder in adults. Mol Psychiatry 2009; 14: 234-235
  • 84 Mehta D, Binder EB. Gene × environment vulnerability factors for PTSD: the HPA-axis. Neuropharmacol 2012; 62: 654-662
  • 85 Weaver IC, Cervoni N. Champagne FA et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7: 847-854
  • 86 McGowan PO, Sasaki A, D’Alessio AC. et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009; 12: 342-348
  • 87 Vinkers CH, Kalafateli AL, Rutten BP. et al. Traumatic stress and human DNA methylation: a critical review. Epigenomics 2015; 7: 593-608
  • 88 Ipser JC, Stein DJ. Evidence-based pharmacotherapy of post-traumatic stress disorder (PTSD). Int J Neuropsychopharmacol 2012; 15: 825-840
  • 89 Hoskins M, Pearce J, Bethell A. et al. Pharmacotherapy for post-traumatic stress disorder: systematic review and meta-analysis. Br J Psychiat 2015; 206: 93-100
  • 90 Shalev AY, Ankri Y, Israeli-Shalev Y. et al. Prevention of posttraumatic stress disorder by early treatment: results from theJerusalem Trauma Outreach and Prevention study. Arch Gen Psychiat 2012; 69: 166-176
  • 91 Guina J, Rossetter SR, DeRhodes BJ. et al. Benzodiazepines for PTSD: A Systematic Review and Meta-Analysis. J Psychiatr Pract 2015; 21: 281-303
  • 92 Gottschalk MG, Domschke K. Genetics of generalized anxiety disorder and related traits. Dialogues Clin Neurosci 2017; 19: 159-168
  • 93 Helton SG, Lohoff FW. Serotonin pathway polymorphisms and the treatment of major depressive disorder and anxiety disorders. Pharmacogenomics 2015; 16: 541-553
  • 94 Hicks JK, Bishop JR, Sangkuhl K. et al Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin Pharmacol Ther 2015; 98: 127-134
  • 95 Zhu J, Klein-Fedyshin M, Stevenson JM. Serotonin Transporter Gene Polymorphisms and Selective Serotonin Reuptake Inhibitor Tolerability: Review of Pharmacogenetic Evidence. Pharmacotherapy 2017; 37: 1089-1104
  • 96 Lawford BR, McD Young R, Noble EP. et al. D2 dopamine receptor gene polymorphism: paroxetine and social functioning in posttraumatic stress disorder. Eur Neuropsychopharmacol 2003; 13: 313-320
  • 97 Thomas E, Stein DJ. Novel pharmacological treatment strategies for posttraumatic stress disorder. Expert Rev Clin Pharmacol 2017; 10: 167-177
  • 98 Mataix-Cols D, Fernández de la Cruz L, Monzani B. et al. D-Cycloserine Augmentation of Exposure-Based Cognitive Behavior Therapy for Anxiety, Obsessive-Compulsive, and Posttraumatic Stress Disorders: A Systematic Review and Meta-analysis of Individual Participant Data. JAMA Psychiat 2017; 74: 501-510
  • 99 Naß J, Efferth T. Pharmacogenetics and Pharmacotherapy of Military Personnel Suffering from Post-traumatic Stress Disorder. Curr Neuropharmacol 2017; 15: 831-860
  • 100 Dudbridge F. Polygenetic Epidemiology. Genet Epidemiol 2016; 268-272
  • 101 Gauderman WJ, Mukherjee B, Aschard H. et al. Update on the State of the Science for Analytical Methods for Gene-Environment Interactions. Am J Epidemiol 2017; 186: 762-770
  • 102 McAllister K, Mechanic LE, Amos C. et al. Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. Am J Epidemiol. 2017; 186: 753-761
  • 103 Lewis CM, Vassos E. Prospects for using risk scores in polygenic medicine. Genome Med 2017; 9: 96