Klin Monbl Augenheilkd 2019; 236(11): 1318-1324
DOI: 10.1055/a-0630-1664
Klinische Studie
Georg Thieme Verlag KG Stuttgart · New York

Der Einfluss von intravitrealem Aflibercept auf das retinale Gefäßkaliber bei Patienten mit diabetischem Makulaödem

Changes in Retinal Vascular Caliber after Intravitreal Aflibercept Treatment for Diabetic Macular Oedema
Andrea Consigli
1   Universitätsaugenklinik Genf, Schweiz
,
Athanasios Papanastasiou
1   Universitätsaugenklinik Genf, Schweiz
,
Daniel Roquelaure
1   Universitätsaugenklinik Genf, Schweiz
,
Raphael Wuarin
1   Universitätsaugenklinik Genf, Schweiz
,
Sayon Roy
2   Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, USA
,
Gabriele Thumann
1   Universitätsaugenklinik Genf, Schweiz
,
Argyrios Chronopoulos
1   Universitätsaugenklinik Genf, Schweiz
› Author Affiliations
Further Information

Publication History

eingereicht 24 October 2017

akzeptiert 04 May 2018

Publication Date:
02 August 2018 (online)

Zusammenfassung

Fragestellung Die diabetische Retinopathie ist durch eine gestörte retinale Gefäßautoregulation gekennzeichnet mit retinaler Hyperperfusion im Frühstadium und Kapillarausfall mit peripherer Ischämie im Spätstadium. Die initiale retinale Gefäßdilatation deutet auf eine Progression der Erkrankung hin und die anschließende Vasokonstriktion signalisiert einen proliferativen Zustand. In dieser Pilotstudie untersuchen wir den Einfluss des intravitrealen Aflibercepts auf den Durchmesser der retinalen Gefäße bei Patienten mit diabetischem Makulaödem.

Methoden Zwölf Augen von 9 Patienten mit diabetischem Makulaödem wurden während der ersten 3 Monate der Behandlung mit Aflibercept untersucht. Es wurden das Kaliber der Netzhautarterien und -venen sowie das zentrale Netzhautarterien- und -venenäquivalent registriert. Das diabetische Makulaödem wurde im Verlauf der Behandlung mit dem Netzhautgefäßkaliber korreliert.

Ergebnisse Die Behandlung mit Aflibercept führt zur signifikanten Reduktion des Durchmessers der Netzhautarterien sowie des zentralen Netzhautarterienäquivalents. Die Netzhautvenen zeigten zwar eine Vasokonstriktion, die aber keine Signifikanz erreichte. Es kam zudem zur signifikanten Reduktion des Makulaödems. Diese korrelierte aber nicht mit dem vaskulären Kaliber der Netzhaut.

Schlussfolgerung Diese Pilotstudie zeigt zum ersten Mal, dass Aflibercept möglicherweise zur signifikanten Reduktion des retinalen arteriellen Gefäßkalibers führt. Ob diese Reaktion auf die intravitreale Anti-VEGF-Behandlung auch eine Verbesserung der retinalen Gefäßhomöostase widerspiegelt, muss in weiteren Studien verifiziert werden.

Abstract

Purpose Diabetic retinopathy is characterised by impaired retinal vascular autoregulation with signs of early retinal hyperperfusion and subsequent capillary drop out and peripheral ischemia. Initial retinal vascular dilation indicates disease progression and subsequent constriction signals a proliferative state. In this pilot study, we examined the effect of intravitreal aflibercept on retinal vessel diameter in patients with diabetic macular oedema.

Methods Twelve eyes of nine treatment-naive patients with diabetic macular oedema were examined during the first three months of treatment with aflibercept. The calibers of retinal arteries and veins and the central retinal arterial and vein equivalent were registered over the course of treatment. The evolution of the diabetic macular oedema was also registered and correlated to the retinal vascular caliber.

Results During treatment, there was a significant reduction in the diameter of retinal arteries as well as in the central retinal arterial equivalent. The calibers of the retinal veins were also reduced, but not significantly. Macular oedema was significantly reduced, which however did not correlate with the vascular caliber changes.

Conclusions This pilot study demonstrates for the first time a possible significant reduction in retinal arterial caliber under aflibercept treatment for diabetic macular oedema. Further studies are needed to verify whether this response to intravitreal anti-VEGF treatment also signifies an improvement in retinal vascular homeostasis.

 
  • Literatur

  • 1 Yau JW, Rogers SL, Kawasaki R. et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012; 35: 556-564
  • 2 Leasher JL, Bourne RR, Flaxman SR. et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 2016; 39: 1643-1649
  • 3 Stitt AW, Curtis TM, Chen M. et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 2016; 51: 156-186
  • 4 Bek T. Diameter changes of retinal vessels in diabetic retinopathy. Curr Diab Rep 2017; 17: 82
  • 5 Klein R, Klein BE, Moss SE. et al. Retinal vessel caliber and microvascular and macrovascular disease in type 2 diabetes: XXI: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology 2007; 114: 1884-1892
  • 6 Klein R, Klein BE, Moss SE. et al. The relation of retinal vessel caliber to the incidence and progression of diabetic retinopathy: XIX: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch Ophthalmol 2004; 122: 76-83
  • 7 Remky A, Arend O, Beausencourt E. et al. [Retinal vessels before and after photocoagulation in diabetic retinopathy. Determining the diameter using digitized color fundus slides]. Klin Monatsbl Augenheilkd 1996; 209: 79-83
  • 8 Ip MS, Domalpally A, Sun JK. et al. Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. Ophthalmology 2014; 122: 367-374
  • 9 Campochiaro PA, Wykoff CC, Shapiro H. et al. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular edema. Ophthalmology 2014; 121: 1783-1789
  • 10 Food and Drug Administration (FDA). LUCENTIS (ranibizumab injection) for intravitreal injection. Supplemental Biologics License Application. Secondary Supplemental Biologics License Application 04/2017. Im Internet: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125156s114lbl.pdf Stand: 18.04.2017
  • 11 Soliman W, Vinten M, Sander B. et al. Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema. Acta Ophthalmol 2008; 86: 365-371
  • 12 Tatlipinar S, Dinc UA, Yenerel NM. et al. Short-term effects of a single intravitreal bevacizumab injection on retinal vessel calibre. Clin Exp Optom 2011; 95: 94-98
  • 13 Vinten M, Larsen M, Lund-Andersen H. et al. Short-term effects of intravitreal triamcinolone on retinal vascular leakage and trunk vessel diameters in diabetic macular oedema. Acta Ophthalmol Scand 2007; 85: 21-26
  • 14 Wickremasinghe SS, Rogers SL, Gillies MC. et al. Retinal vascular caliber changes after intravitreal triamcinolone treatment for diabetic macular edema. Invest Ophthalmol Vis Sci 2008; 49: 4707-4711
  • 15 Terai N, Haustein M, Siegel A. et al. Diameter of retinal vessels in patients with diabetic macular edema is not altered by intravitreal ranibizumab (lucentis). Retina 2014; 34: 1466-1472
  • 16 Wickremasinghe SS, Fraser-Bell S, Alessandrello E. et al. Retinal vascular calibre changes after intravitreal bevacizumab or dexamethasone implant treatment for diabetic macular oedema. Br J Ophthalmol 2017; 101: 1329-1333
  • 17 Stewart MW, Rosenfeld PJ, Penha FM. et al. Pharmacokinetic rationale for dosing every 2 weeks versus 4 weeks with intravitreal ranibizumab, bevacizumab, and aflibercept (vascular endothelial growth factor Trap-eye). Retina 2012; 32: 434-457
  • 18 Seifertl BU, Vilser W. Retinal Vessel Analyzer (RVA) – design and function. Biomed Tech (Berl) 2002; 47 (Suppl. 01) S678-S681
  • 19 Vilser W, Nagel E, Lanzl I. Retinal Vessel Analysis – new possibilities. Biomed Tech (Berl) 2002; 47 (Suppl. 01) S682-S685
  • 20 Moradi A, Sepah YJ, Ibrahim MA. et al. Association of retinal vessel calibre and visual outcome in eyes with diabetic macular oedema treated with ranibizumab. Eye (Lond) 2014; 28: 1315-1320
  • 21 Papadopoulos N, Martin J, Ruan Q. et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012; 15: 171-185
  • 22 Stewart MW. Clinical and differential utility of VEGF inhibitors in wet age-related macular degeneration: focus on aflibercept. Clin Ophthalmol 2012; 6: 1175-1186
  • 23 Stewart MW, Grippon S, Kirkpatrick P. Aflibercept. Nat Rev Drug Discov 2012; 11: 269-270
  • 24 Riva CE, Sinclair SH, Grunwald JE. Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 1981; 21: 34-38
  • 25 Robinson F, Riva CE, Grunwald JE. et al. Retinal blood flow autoregulation in response to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 1986; 27: 722-726
  • 26 Blum M, Kubetschka U, Hunger-Dathe W. et al. [Autoregulation of retinal arterioles in patients with diabetes mellitus and normal probands]. Klin Monatsbl Augenheilkd 2000; 216: 40-44
  • 27 Tilton RG, Chang KC, LeJeune WS. et al. Role for nitric oxide in the hyperpermeability and hemodynamic changes induced by intravenous VEGF. Invest Ophthalmol Vis Sci 1999; 40: 689-696
  • 28 Harris A, Ciulla TA, Chung HS. et al. Regulation of retinal and optic nerve blood flow. Arch Ophthalmol 1998; 116: 1491-1495
  • 29 Kimura H, Esumi H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol 2003; 50: 49-59
  • 30 Izumi N, Nagaoka T, Mori F. et al. Relation between plasma nitric oxide levels and diabetic retinopathy. Jpn J Ophthalmol 2006; 50: 465-468