Rofo 2018; 190(12): 1121-1130
DOI: 10.1055/a-0612-8006
Review
© Georg Thieme Verlag KG Stuttgart · New York

Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction

MR-Bildgebung von Fettgewebe bei Stoffwechselstörungen
Daniela Franz
1   Institute for Diagnostic and Interventional Radiology, Technische Universität München, Fakultät für Medizin, Munich, Germany
,
Jan Syväri
1   Institute for Diagnostic and Interventional Radiology, Technische Universität München, Fakultät für Medizin, Munich, Germany
,
Dominik Weidlich
1   Institute for Diagnostic and Interventional Radiology, Technische Universität München, Fakultät für Medizin, Munich, Germany
,
Thomas Baum
2   Institute for Diagnostic and Interventional Neuroradiology, Technische Universität München, Fakultät für Medizin, Munich, Germany
,
Ernst J Rummeny
1   Institute for Diagnostic and Interventional Radiology, Technische Universität München, Fakultät für Medizin, Munich, Germany
,
Dimitrios C. Karampinos
1   Institute for Diagnostic and Interventional Radiology, Technische Universität München, Fakultät für Medizin, Munich, Germany
› Author Affiliations
Further Information

Publication History

02 November 2017

07 April 2018

Publication Date:
06 June 2018 (online)

Abstract

Background Adipose tissue has become an increasingly important tissue target in medicine. It plays a central role in the storage and release of energy throughout the human body and has recently gained interest for its endocrinologic function. Magnetic resonance imaging (MRI) is an established method for quantitative direct evaluation of adipose tissue distribution, and is used increasingly as the modality of choice for metabolic phenotyping. The purpose of this review was the identification and presentation of the currently available literature on MRI of adipose tissue in metabolic dysfunction.

Method A PubMed (http://www.ncbi.nlm.nih.gov/pubmed) keyword search up to August 2017 without starting date limitation was performed and reference lists of relevant articles were searched.

Results and Conclusion MRI provides excellent tools for the evaluation of adipose tissue distribution and further characterization of the tissue. Standard as well as newly developed MRI techniques allow a risk stratification for the development of metabolic dysfunction and enable monitoring without the use of ionizing radiation or contrast material.

Key points

  • Different types of adipose tissue play a crucial role in various types of metabolic dysfunction.

  • Magnetic resonance imaging (MRI) is an excellent tool for noninvasive adipose tissue evaluation with respect to distribution, composition and metabolic activity.

  • Both standard and newly developed MRI techniques can be used for risk stratification for the development of metabolic dysfunction and allow monitoring without the use of ionizing radiation or contrast material.

Citation Format

  • Franz D, Syväri J, Weidlich D et al. Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction. Fortschr Röntgenstr 2018; 190: 1121 – 1130

Zusammenfassung

Hintergrund Fettgewebe rückt zunehmend in den Fokus der Medizin. Es spielt eine zentrale Rolle bei der Speicherung und Freisetzung von Energie im gesamten menschlichen Körper und hat aufgrund seiner endokrinologischen Funktion in letzter Zeit das Interesse der Wissenschaft geweckt. Die Magnetresonanztomografie (MRT) ist eine etablierte Methode zur quantitativen direkten Beurteilung der Fettgewebsverteilung und wird zunehmend als Methode der Wahl für die metabolische Phänotypisierung eingesetzt. Der Zweck dieser Übersichtsarbeit ist die Identifizierung und Darlegung der derzeit verfügbaren Literatur über die MRT von Fettgewebe bei Stoffwechselstörungen.

Methode Eine PubMed (http://www.ncbi.nlm.nih.gov/pubmed) Schlagwortsuche bis August 2017 ohne Einschränkung hinsichtlich des Startdatums wurde durchgeführt und Referenzlisten relevanter Artikel wurden durchsucht.

Ergebnisse und Schlussfolgerung Die MRT bietet hervorragende Möglichkeiten zur Beurteilung der Fettgewebsverteilung und zur weiteren Charakterisierung des Gewebes. Standard- sowie neu entwickelte MRT-Techniken erlauben eine Risikostratifizierung hinsichtlich der Entwicklung von Stoffwechselstörungen und ermöglichen ein weiteres Monitoring ohne den Einsatz von ionisierender Strahlung oder Kontrastmittel.

Kernaussagen

  • Verschiedene Typen von Fettgewebe spielen bei Stoffwechselstörungen eine entscheidende Rolle.

  • Die Magnetresonanztomografie bietet hervorragende Möglichkeiten zur nicht-invasiven Evaluation von Fettgewebe hinsichtlich dessen Verteilung, Zusammensetzung und Stoffwechselaktivität.

  • Sowohl MRT-Standardtechniken als auch neu entwickelte Techniken erlauben die Risikostratifizierung bzgl. Stoffwechselstörungen und ermöglichen deren Monitoring ohne den Gebrauch von ionisierender Strahlung oder Kontrastmittel.

 
  • References

  • 1 Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89: 2548-2556 . DOI: 10.1210/jc.2004-0395
  • 2 Zhou X, Wang JL, Lu J. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 2010; 142: 531-543 . DOI: 10.1016/j.cell.2010.07.011
  • 3 Mohammad A, De Lucia Rolfe E, Sleigh A. et al. Validity of visceral adiposity estimates from DXA against MRI in Kuwaiti men and women. Nutr Diabetes 2017; 7: e238 . DOI: 10.1038/nutd.2016.38
  • 4 Thomas EL, Fitzpatrick JA, Malik SJ. et al. Whole body fat: content and distribution. Prog Nucl Magn Reson Spectrosc 2013; 73: 56-80 . DOI: 10.1016/j.pnmrs.2013.04.001
  • 5 Mitra S, Fernandez-Del-Valle M, Hill JE. The role of MRI in understanding the underlying mechanisms in obesity associated diseases. Biochim Biophys Acta 2017; 1863: 1115-1131 . DOI: 10.1016/j.bbadis.2016.09.008
  • 6 Shen W, Wang Z, Punyanita M. et al. Adipose tissue quantification by imaging methods: a proposed classification. Obes Res 2003; 11: 5-16 . DOI: 10.1038/oby.2003.3
  • 7 Baum T, Cordes C, Dieckmeyer M. et al. MR-based assessment of body fat distribution and characteristics. Eur J Radiol 2016; 85: 1512-1518 . DOI: 10.1016/j.ejrad.2016.02.013
  • 8 Yudasaka M, Yomogida Y, Zhang M. et al. Near-Infrared Photoluminescent Carbon Nanotubes for Imaging of Brown Fat. Sci Rep 2017; 7: 44760 . DOI: 10.1038/srep44760
  • 9 Sampath SC, Sampath SC, Bredella MA. et al. Imaging of Brown Adipose Tissue: State of the Art. Radiology 2016; 280: 4-19 . DOI: 10.1148/radiol.2016150390
  • 10 Cordes C, Dieckmeyer M, Ott B. et al. MR-detected changes in liver fat, abdominal fat, and vertebral bone marrow fat after a four-week calorie restriction in obese women. J Magn Reson Imaging 2015; 42: 1272-1280 . DOI: 10.1002/jmri.24908
  • 11 Linder K, Springer F, Machann J. et al. Relationships of body composition and liver fat content with insulin resistance in obesity-matched adolescents and adults. Obesity (Silver Spring) 2014; 22: 1325-1331 . DOI: 10.1002/oby.20685
  • 12 Machann J, Thamer C, Schnoedt B. et al. Standardized assessment of whole body adipose tissue topography by MRI. J Magn Reson Imaging 2005; 21: 455-462 . DOI: 10.1002/jmri.20292
  • 13 Franz D, Karampinos DC, Rummeny EJ. et al. Discrimination Between Brown and White Adipose Tissue Using a 2-Point Dixon Water-Fat Separation Method in Simultaneous PET/MRI. J Nucl Med 2015; 56: 1742-1747 . DOI: 10.2967/jnumed.115.160770
  • 14 Positano V, Gastaldelli A, Sironi AM. et al. An accurate and robust method for unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging 2004; 20: 684-689 . DOI: 10.1002/jmri.20167
  • 15 Gronemeyer SA, Steen RG, Kauffman WM. et al. Fast adipose tissue (FAT) assessment by MRI. Magn Reson Imaging 2000; 18: 815-818
  • 16 Hu HH, Chen J, Shen W. Segmentation and quantification of adipose tissue by magnetic resonance imaging. MAGMA 2016; 29: 259-276 . DOI: 10.1007/s10334-015-0498-z
  • 17 Kullberg J, Ahlstrom H, Johansson L. et al. Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI. Int J Obes (Lond) 2007; 31: 1806-1817 . DOI: 10.1038/sj.ijo.0803671
  • 18 Machann J, Stefan N, Schabel C. et al. Fraction of unsaturated fatty acids in visceral adipose tissue (VAT) is lower in subjects with high total VAT volume – a combined 1 H MRS and volumetric MRI study in male subjects. NMR Biomed 2013; 26: 232-236 . DOI: 10.1002/nbm.2849
  • 19 Thomas EL, Frost G, Barnard ML. et al. An in vivo 13C magnetic resonance spectroscopic study of the relationship between diet and adipose tissue composition. Lipids 1996; 31: 145-51
  • 20 Beckmann N, Brocard JJ, Keller U. et al. Relationship between the degree of unsaturation of dietary fatty acids and adipose tissue fatty acids assessed by natural-abundance 13C magnetic resonance spectroscopy in man. Magn Reson Med 1992; 27: 97-106
  • 21 Tucci S, Flogel U, Sturm M. et al. Disrupted fat distribution and composition due to medium-chain triglycerides in mice with a beta-oxidation defect. Am J Clin Nutr 2011; 94: 439-449 . DOI: 10.3945/ajcn.111.012948
  • 22 Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 2012; 36: 1011-1014 . DOI: 10.1002/jmri.23741
  • 23 Bannas P, Kramer H, Hernando D. et al. Quantitative magnetic resonance imaging of hepatic steatosis: Validation in ex vivo human livers. Hepatology 2015; 62: 1444-1455 . DOI: 10.1002/hep.28012
  • 24 Tang A, Tan J, Sun M. et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013; 267: 422-431 . DOI: 10.1148/radiol.12120896
  • 25 Yokoo T, Serai SD, Pirasteh A. et al. Linearity, Bias, and Precision of Hepatic Proton Density Fat Fraction Measurements by Using MR Imaging: A Meta-Analysis. Radiology 2018; 286: 486-498 . DOI: 10.1148/radiol.2017170550
  • 26 Franz D, Weidlich D, Freitag F. et al. Association of proton density fat fraction in adipose tissue with imaging-based and anthropometric obesity markers in adults. Int J Obes (Lond) 2017; DOI: 10.1038/ijo.2017.194.
  • 27 Hu HH, Hines CD, Smith DL. et al. Variations in T(2)* and fat content of murine brown and white adipose tissues by chemical-shift MRI. Magn Reson Imaging 2012; 30: 323-329 . DOI: 10.1016/j.mri.2011.12.004
  • 28 Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell 2014; 156: 20-44 . DOI: 10.1016/j.cell.2013.12.012
  • 29 Golan R, Shelef I, Rudich A. et al. Abdominal superficial subcutaneous fat: a putative distinct protective fat subdepot in type 2 diabetes. Diabetes Care 2012; 35: 640-647 . DOI: 10.2337/dc11-1583
  • 30 Shen J, Baum T, Cordes C. et al. Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity. Eur J Radiol 2016; 85: 1613-1621 . DOI: 10.1016/j.ejrad.2016.06.006
  • 31 Garnov N, Linder N, Schaudinn A. et al. Comparison of T1 relaxation times in adipose tissue of severely obese patients and healthy lean subjects measured by 1.5 T MRI. NMR Biomed 2014; 27: 1123-1128 . DOI: 10.1002/nbm.3166
  • 32 Hu HH, Tovar JP, Pavlova Z. et al. Unequivocal identification of brown adipose tissue in a human infant. J Magn Reson Imaging 2012; 35: 938-942 . DOI: 10.1002/jmri.23531
  • 33 Franssens BT, Eikendal AL, Leiner T. et al. Reliability and agreement of adipose tissue fat fraction measurements with water-fat MRI in patients with manifest cardiovascular disease. NMR Biomed 2016; 29: 48-56 . DOI: 10.1002/nbm.3444
  • 34 Franssens BT, Hoogduin H, Leiner T. et al. Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease. J Magn Reson Imaging 2017; 46: 497-504 . DOI: 10.1002/jmri.25594
  • 35 Sadananthan SA, Khoo EYH, Leow M, Khoo C, Venkataraman K, Lee YS, Chong YS, Gluckman PD, Tai ES, Velan, S. S., editor. Effect of Weight Loss and Regional Differences in Abdominal Adipose Tissue Hydration. International Society for Magnetic Resonance in Medicine; Toronto, Canada.: 2015
  • 36 Hamilton G, Schlein AN, Middleton MS. et al. In vivo triglyceride composition of abdominal adipose tissue measured by 1 H MRS at 3T. J Magn Reson Imaging 2017; 45: 1455-1463 . DOI: 10.1002/jmri.25453
  • 37 Machann J, Stefan N, Wagner R. et al. Intra- and interindividual variability of fatty acid unsaturation in six different human adipose tissue compartments assessed by 1 H-MRS in vivo at 3 T. NMR Biomed 2017; 30 DOI: 10.1002/nbm.3744.
  • 38 Cypess AM, Lehman S, Williams G. et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509-1517 . DOI: 10.1056/NEJMoa0810780
  • 39 Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19: 1252-1263 . DOI: 10.1038/nm.3361
  • 40 Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277-359 . DOI: 10.1152/physrev.00015.2003
  • 41 Heaton JM. The distribution of brown adipose tissue in the human. J Anat 1972; 112: 35-9
  • 42 van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM. et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500-1508 . DOI: 10.1056/NEJMoa0808718
  • 43 Kim H, Pennisi PA, Gavrilova O. et al. Effect of adipocyte beta3-adrenergic receptor activation on the type 2 diabetic MKR mice. Am J Physiol Endocrinol Metab 2006; 290: E1227-E1236 . DOI: 10.1152/ajpendo.00344.2005
  • 44 Hu HH, Yin L, Aggabao PC. et al. Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water-fat MRI. J Magn Reson Imaging 2013; 38: 885-896 . DOI: 10.1002/jmri.24053
  • 45 Rasmussen JM, Entringer S, Nguyen A. et al. Brown adipose tissue quantification in human neonates using water-fat separated MRI. PLoS One 2013; 8: e77907 . DOI: 10.1371/journal.pone.0077907
  • 46 Hamilton G, Smith DL, Bydder Jr M. et al. MR properties of brown and white adipose tissues. J Magn Reson Imaging 2011; 34: 468-473 . DOI: 10.1002/jmri.22623
  • 47 Lau AZ, Chen AP, Gu Y. et al. Noninvasive identification and assessment of functional brown adipose tissue in rodents using hyperpolarized (1)(3)C imaging. Int J Obes (Lond) 2014; 38: 126-131 . DOI: 10.1038/ijo.2013.58
  • 48 Grimpo K, Volker MN, Heppe EN. et al. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance. J Lipid Res 2014; 55: 398-409 . DOI: 10.1194/jlr.M042895
  • 49 Sbarbati A, Cavallini I, Marzola P. et al. Contrast-enhanced MRI of brown adipose tissue after pharmacological stimulation. Magn Reson Med 2006; 55: 715-718 . DOI: 10.1002/mrm.20851
  • 50 Dai W, Weiner LS, Alsop DC. Feasibility and repeatability of brown adipose tissue volume and perfusion activity using MRI. Proceedings of 23 rd Int Society for Magnetic Resonance in Medicine. 2015: 539
  • 51 Khanna A, Branca RT. Detecting brown adipose tissue activity with BOLD MRI in mice. Magn Reson Med 2012; 68: 1285-1290 . DOI: 10.1002/mrm.24118
  • 52 van Rooijen BD, van der Lans AA, Brans B. et al. Imaging cold-activated brown adipose tissue using dynamic T2*-weighted magnetic resonance imaging and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography. Invest Radiol 2013; 48: 708-714 . DOI: 10.1097/RLI.0b013e31829363b8
  • 53 Branca RT, He T, Zhang L. et al. Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI. Proc Natl Acad Sci U S A 2014; 111: 18001-18006 . DOI: 10.1073/pnas.1403697111
  • 54 Flegal KM, Kruszon-Moran D, Carroll MD. et al. Trends in Obesity Among Adults in the United States, 2005 to 2014. JAMA 2016; 315: 2284-2291 . DOI: 10.1001/jama.2016.6458
  • 55 Fujioka S, Matsuzawa Y, Tokunaga K. et al. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 1987; 36: 54-59
  • 56 Goodpaster BH, Thaete FL, Simoneau JA. et al. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 1997; 46: 1579-1585
  • 57 Fox CS, Massaro JM, Hoffmann U. et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39-48 . DOI: 10.1161/CIRCULATIONAHA.106.675355
  • 58 Anderson PJ, Chan JC, Chan YL. et al. Visceral fat and cardiovascular risk factors in Chinese NIDDM patients. Diabetes Care 1997; 20: 1854-1858
  • 59 Despres JP, Lamarche B. Effects of diet and physical activity on adiposity and body fat distribution: implications for the prevention of cardiovascular disease. Nutr Res Rev 1993; 6: 137-159 . DOI: 10.1079/NRR19930010
  • 60 Fontana L, Eagon JC, Trujillo ME. et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007; 56: 1010-1013 . DOI: 10.2337/db06-1656
  • 61 Bjorntorp P. Metabolic implications of body fat distribution. Diabetes Care 1991; 14: 1132-1143
  • 62 Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000; 21: 697-738 . DOI: 10.1210/edrv.21.6.0415
  • 63 Machann J, Thamer C, Schnoedt B. et al. Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: a whole body MRI/MRS study. MAGMA 2005; 18: 128-137 . DOI: 10.1007/s10334-005-0104-x
  • 64 Thomas EL, Parkinson JR, Frost GS. et al. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring) 2012; 20: 76-87 . DOI: 10.1038/oby.2011.142
  • 65 Machann J, Thamer C, Stefan N. et al. Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes. Radiology 2010; 257: 353-363 . DOI: 10.1148/radiol.10092284
  • 66 Zhang M, Hu T, Zhang S. et al. Associations of Different Adipose Tissue Depots with Insulin Resistance: A Systematic Review and Meta-analysis of Observational Studies. Sci Rep 2015; 5: 18495 . DOI: 10.1038/srep18495
  • 67 Pike KM. Long-term course of anorexia nervosa: response, relapse, remission, and recovery. Clin Psychol Rev 1998; 18: 447-475
  • 68 Bodell LP, Mayer LE. Percent body fat is a risk factor for relapse in anorexia nervosa: a replication study. Int J Eat Disord 2011; 44: 118-123 . DOI: 10.1002/eat.20801
  • 69 Mayer LE, Klein DA, Black E. et al. Adipose tissue distribution after weight restoration and weight maintenance in women with anorexia nervosa. Am J Clin Nutr 2009; 90: 1132-1137 . DOI: 10.3945/ajcn.2009.27820
  • 70 Bredella MA, Fazeli PK, Freedman LM. et al. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab 2012; 97: E584-E590 . DOI: 10.1210/jc.2011-2246
  • 71 Fouladiun M, Korner U, Bosaeus I. et al. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care--correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 2005; 103: 2189-2198 . DOI: 10.1002/cncr.21013
  • 72 Agustsson T, Wikrantz P, Ryden M. et al. Adipose tissue volume is decreased in recently diagnosed cancer patients with cachexia. Nutrition 2012; 28: 851-855 . DOI: 10.1016/j.nut.2011.11.026
  • 73 Petruzzelli M, Schweiger M, Schreiber R. et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 2014; 20: 433-447 . DOI: 10.1016/j.cmet.2014.06.011
  • 74 Beijer E, Schoenmakers J, Vijgen G. et al. A role of active brown adipose tissue in cancer cachexia?. Oncol Rev 2012; 6: e11 . DOI: 10.4081/oncol.2012.e11
  • 75 Carneiro IP, Mazurak VC, Prado CM. Clinical Implications of Sarcopenic Obesity in Cancer. Curr Oncol Rep 2016; 18: 62 . DOI: 10.1007/s11912-016-0546-5