RSS-Feed abonnieren
DOI: 10.1055/a-0586-3440
Aktuelle Therapiestudien im Bereich der atypischen Parkinson Syndrome
Current therapy studies in atypical Parkinson syndromesPublikationsverlauf
eingereicht 05. Januar 2018
akzeptiert 27. Februar 2018
Publikationsdatum:
11. Juli 2018 (online)
Zusammenfassung
Bei den atypischen Parkinson Syndromen handelt es sich um eine Gruppe neurodegenerativer Erkrankungen, die klinisch durch eine akinetisch-rigide Symptomatik mit zusätzlichen nicht-motorischen Symptomen gekennzeichnet sind. Anhand ihrer Pathologie, dem zugrundeliegenden fehlgefalteten Protein, lassen sich diese in Synucleinopathien (Multisystematrophie und Demenz vom Lewy-Body-Typ) und Tauopathien (progressive supranukleäre Blickparese und Kortikobasale Degeneration) einteilen. Dabei existieren bisher keine kausalen Therapiemöglichkeiten, in den meist rasch progredienten Krankheitsverlauf einzugreifen. Symptomatische Therapien besitzen nur einen kurzfristigen, häufig unbefriedigenden Effekt. In den letzten Jahren konnten durch präklinische Forschung Pathomechanismen in der Krankheitsentstehung charakterisiert werden. Dabei wurden Substanzen entwickelt, die beispielsweise die pathologische Protein-Aggregation oder in die Verbreitung der Pathologie verhindern und im Tiermodell einen Einfluss auf das Fortschreiten der Krankheit zeigen konnten. Dabei wurden erste klinische Studien, welche in die Entstehung der zugrundeliegenden Pathologie eingreifen, durchgeführt; viele befinden sich aktuell in der Rekrutierung oder Planung. In folgendem Artikel stellen wir die aktuellen Entwicklungen im Gebiet der atypischen Parkinson Syndrome vor und präsentieren die aktuellen Studien.
Abstract
Atypical Parkinson syndromes are a heterogeneous group of neurodegenerative diseases which present with parkinsonism and other non-motor symptoms. On the basis of the underlying pathology, namely the abnormal aggregation of the proteins alpha-synuclein or tau, atypical Parkinson syndromes can be divided into synucleinopathies (multiple system atrophy, Lewy body dementia) and tauopathies (progressive supranuclear palsy, corticobasal degeneration). Currently there are no effective treatments to slow down disease progression available. Medications which help to manage the symptoms show only temporary and insufficient efficacy. In recent years, preclinical research identified essential steps in the pathogenesis of the diseases. Treatments which inhibit pathological protein aggregation and its spreading were developed and showed promising results in animal models. First clinical trials of causal treatments targeting the underlying pathomechanism have been finished; several trials are recruiting patients or being planned at the moment. In the following article we present the latest developments regarding the causal therapy of atypical Parkinson syndromes and the current clinical trials.
-
Literatur
- 1 Levin J, Kurz A, Arzberger T. et al. The Differential Diagnosis and Treatment of Atypical Parkinsonism. Dtsch Arztebl Int 2016; 113: 61-69
- 2 Dickson DW. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2012 2
- 3 Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med 2015; 372: 249-263
- 4 Hollerhage M, Moebius C, Melms J. et al. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Sci Rep 2017; 7: 11469
- 5 Boxer AL, Yu JT, Golbe LI. et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 2017; 16: 552-563
- 6 McFarland NR. Diagnostic Approach to Atypical Parkinsonian Syndromes. Continuum (Minneap Minn) 2016; 22: 1117-1142
- 7 Respondek G, Stamelou M, Kurz C. et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord 2014; 29: 1758-1766
- 8 Castro Caldas A, Levin J, Djaldetti R. et al. Critical appraisal of clinical trials in multiple system atrophy: Toward better quality. Mov Disord 2017; 32: 1356-1364
- 9 Recasens A, Dehay B. Alpha-synuclein spreading in Parkinson’s disease. Front Neuroanat 2014; 8: 159
- 10 Levin J, Maass S, Schuberth M. et al. The PROMESA-protocol: progression rate of multiple system atrophy under EGCG supplementation as anti-aggregation-approach. J Neural Transm (Vienna) 2016; 123: 439-445
- 11 Valera E, Monzio Compagnoni G, Masliah E. Review:Novel treatment strategies targeting alpha-synuclein in multiple system atrophy as a model of synucleinopathy. Neuropathol Appl Neurobiol 2016; 42 : 95-106
- 12 Wagner J, Ryazanov S, Leonov A. et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol 2013; 125: 795-813
- 13 Levin J, Schmidt F, Boehm C. et al. The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathologica . 2014; 127 (05) : 779-780 . doi:10.1007/s00401-014-1265-3.
- 14 Hernandez Martinez, Urbanke Fischer. et.al. “The diphenylpyrazole compound anle138b blocks Aβ channels and rescues disease phenotypes in a mouse model for amyloid pathology” ( 2017; ) EMBO Molecular Medicine Jan ,; 10 (01) : 32-47 .
- 15 Matthes D, Gapsys V, Griesinger C, de Groot BL. “Resolving the Atomistic Modes of Anle138b Inhibitory Action on Peptide Oligomer Formation.” ( 2017; ) ACS Chem Neurosci,. 8 (12) : 2791-2808 .
- 16 Price DL WW, Tsigelny I, Bonhaus D, Paulino AD, Mante M, Inglis C, Adame A, Moessler H, Rockenstein E, Masliah E. Novel structure based designed compound reduces accumulation of toxic alpha-synuclein and improves deficits in a transgenic murine model of PD/DLB. Society for Neuroscience, Abstract 35725 2011
- 17 Koike MA PD, White BM, Rockenstein E, Wrasidlo W, Tsigelny I, Meier D, Masliah E, Bonhaus D. The novel alpha-synuclein stabilizer NPT200-11 improves behavior, neuropathology, and biochemistry in the murine thy1-ASYN transgenic model of Parkinson’s disease. Society for Neuroscience, Abstract 41106 2014
- 18 Longhena F, Faustini G, Missale C. et al. The Contribution of alpha-Synuclein Spreading to Parkinson’s Disease Synaptopathy. Neural Plast 2017 2017. 5012129
- 19 Games D, Valera E, Spencer B. et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 2014; 34: 9441-9454
- 20 Schenk DB, Koller M, Ness DK. et al. First-in-human assessment of PRX002, an anti-alpha-synuclein monoclonal antibody, in healthy volunteers. Mov Disord 2017; 32: 211-218
- 21 Mandler M, Valera E, Rockenstein E. et al. Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol 2014; 127: 861-879
- 22 Stefanova N, Wenning GK. Review: Multiple system atrophy: emerging targets for interventional therapies. Neuropathol Appl Neurobiol 2016; 42: 20-32
- 23 Stefanova N, Georgievska B, Eriksson H. et al. Myeloperoxidase inhibition ameliorates multiple system atrophy-like degeneration in a transgenic mouse model. Neurotox Res 2012; 21: 393-404
- 24 Jucaite A, Svenningsson P, Rinne JO. et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease. Brain 2015; 138: 2687-2700
- 25 Kaindlstorfer C, Sommer P, Georgievska B. et al. Failure of Neuroprotection Despite Microglial Suppression by Delayed-Start Myeloperoxidase Inhibition in a Model of Advanced Multiple System Atrophy: Clinical Implications. Neurotox Res 2015; 28: 185-194
- 26 Popescu BF, George MJ, Bergmann U. et al. Mapping metals in Parkinson’s and normal brain using rapid-scanning x-ray fluorescence. Phys Med Biol 2009; 54: 651-663
- 27 Lee PH, Lee JE, Kim HS. et al. A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 2012; 72: 32-40
- 28 Osborne A, Sanderson J, Martin KR. Neuroprotective Effects of Human Mesenchymal Stem Cells and Platelet-Derived Growth Factor on Human Retinal Ganglion Cells. Stem Cells 2018; 36: 65-78
- 29 Wolfgang Singer AD, Anita Zeller, Tonette Gehrking, James Schmelzer, David Sletten, Jade Gehrking, Elizabeth Coon, Paola Sandroni, Eduardo Benarroch, Robert Fealey, Joseph Matsumoto, James Bower J. Ahlskog Anhar Hassan, Andrew McKeon, Bryan Klassen. Phillip Low. Intrathecal Administration of Autologous Mesenchymal Stem Cells in Multiple System Atrophy – A Phase I/II Dose-Escalation Trial (S11.002). Neurology Apr 2017, 88 (16 Supplement) S11002; 2017 , DOI:
- 30 Wischik CM, Staff RT, Wischik DJ. et al. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J Alzheimers Dis 2015; 44: 705-720
- 31 Tolosa E, Litvan I, Hoglinger GU. et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 2014; 29: 470-478
- 32 Hoglinger GU, Huppertz HJ, Wagenpfeil S. et al. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov Disord 2014; 29: 479-487
- 33 Yuzwa SA, Shan X, Macauley MS. et al. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 2012; 8: 393-399
- 34 Min SW, Chen X, Tracy TE. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 2015; 21: 1154-1162
- 35 Boxer AL, Lang AE, Grossman M. et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 2014; 13: 676-685
- 36 Khanna MR, Kovalevich J, Lee VM. et al. Therapeutic strategies for the treatment of tauopathies: Hopes and challenges. Alzheimers Dement 2016; 12: 1051-1065
- 37 Morimoto BH, , Fox AW, , Stewart AJ. et al. Davunetide: a review of safety and efficacy data with a focus on neurodegenerative diseases. Expert Rev Clin Pharmacol 2013; 6: 483-502
- 38 Yanamandra K, Kfoury N, Jiang H. et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 2013; 80: 402-414
- 39 Trirucherai GW J. Grundmann M. et al. A Single-ascending Dose-Study of the Tau-direct Monoclonal Antibody BMS-986168. The International Parkinson and Movement Disorders Society, 20th International Congress; 2016. Berlin:
- 40 Yanamandra K, Jiang H, Mahan TE. et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol 2015; 2: 278-288
- 41 Sigurdsson EM. Tau Immunotherapy. Neurodegener Dis 2016; 16: 34-38
- 42 Novak P, Schmidt R, Kontsekova E. et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 2017; 16: 123-134
- 43 Stamelou M, Reuss A, Pilatus U. et al. Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord 2008; 23: 942-949
- 44 Apetauerova D, Scala SA, Hamill RW. et al. CoQ10 in progressive supranuclear palsy: A randomized, placebo-controlled, double-blind trial. Neurol Neuroimmunol Neuroinflamm 2016; 3: e266
- 45 Bensimon G, Ludolph A, Agid Y. et al. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 2009; 132: 156-171
- 46 Gentry EG, Henderson BW, Arrant AE. et al. Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration. J Neurosci 2016; 36: 1316-1323
- 47 Sud R, Geller ET, Schellenberg GD. Antisense-mediated Exon Skipping Decreases Tau Protein Expression: A Potential Therapy For Tauopathies. Mol Ther Nucleic Acids 2014; 3: e180
- 48 Bruch J, Xu H, Rosler TW. et al. PERK activation mitigates tau pathology in vitro and in vivo. EMBO Mol Med 2017; 9: 371-384
- 49 Smith R, Scholl M, Widner H. et al. In vivo retention of (18)F-AV-1451 in corticobasal syndrome. Neurology 2017; 89: 845-853
- 50 Josephs KA, Whitwell JL, Tacik P. et al. [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 2016; 132: 931-933
- 51 Whitwell JL, Lowe VJ, Tosakulwong N. et al. [(18) F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord 2017; 32: 124-133
- 52 Doppler K, Weis J, Karl K. et al. Distinctive distribution of phospho-alpha-synuclein in dermal nerves in multiple system atrophy. Mov Disord 2015; 30: 1688-1692
- 53 Rojas JC, Karydas A, Bang J. et al. Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann Clin Transl Neurol 2016; 3: 216-225
- 54 Dodel R, Spottke A, Gerhard A, Reuss A, Reinecker S, Schimke N, Trenkwalder C, Sixel-Döring F, Herting B, Kamm C, Gasser T, Sawires M, Geser F, Köllen- sperger M, Seppi K, Kloss M, Krause M, Daniels C, Deuschl G, Böttger S, Naumann M, Lipp A, Gruber D, Kupsch A, Du Y, Turkheimer F, Brooks DJ, Klockgether T, Poewe W, Wenning G, Schade-Brittinger C, Oertel WH, Eggert K. ( 2010; ) “Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial)”. Mov Disord, 25 (01) : 97-107
- 55 Poewe W, Seppi K, Fitzer-Attas CJ, Wenning GK, Gilman S, Low PA, Giladi N, Barone P, Sampaio C, Eyal E, Rascol O. ; investigators Rasagiline-for-MSA. “Efficacy of rasagiline in patients with the parkinsonian variant of multiple system atrophy: a randomised, placebo-controlled trial.” ( 2014; ) Lancet Neurol, 13 (03) : 268-275 .
- 56 Low Phillip A, Robertson David, Gilman Sid, Kaufmann Horacio, Singer Wolfgang, Biaggioni Italo, Freeman Roy, Perlman Susan, Hauser Robert A, Che- shire William, Lessig Stephanie, Vernino Steven, Mandrekar Jay, Dupont William D, Chelimsky Thomas. and Galpern Wendy R. “ Efficacy and safety of rifampicin for multiple system atrophy: a randomised, double-blind, placebo-controlled trial” ( 2014; ) Lancet Neurol,. 13 (03) 268-275