Scheuermann, J.  et al.: 2024 Science of Synthesis, 2023/5: DNA-Encoded Libraries DOI: 10.1055/sos-SD-241-00249
DNA-Encoded Libraries

4.3 Selections of DNA-Encoded Libraries to Protein Targets on Living Cells

More Information

Book

Editors: Scheuermann, J. ; Li, Y.

Authors: Barluenga, S. ; Bassi, G. ; Brunschweiger, A. ; Cai, B. ; Cazzamalli, S. ; Chheda, P. ; Cui, M. ; Cui, W. ; Fang, X. ; Farrera-Soler, L. ; Favalli, N. ; Feng, J.; Foley, T. L. ; Franzini, R. M. ; Georgiev, T. ; Gillingham, D. ; Gloger, A. ; Graham, J. D. ; Granados, A. ; Heiden, S.; Hou, W. ; Huang, Y. ; Keefe, A. D. ; Krusemark, C. J. ; Li, X. ; Li, Y. ; Lin, W. ; Litovchick, A.; Liu, G. ; Lu, X. ; Lucaroni, L. ; Ma, P. ; Migliorini, F. ; Molander, G. A. ; Neri, D. ; Nie, Q. ; Oehler, S. ; Prati, L. ; Puglioli, S. ; Reddavide, F. V. ; Satz, A. L. ; Sauter, B. ; Scheuermann, J. ; Schuman, D.; Simmons, N. ; Stanway-Gordon, H. A. ; Su, W. ; Sun, J. ; Thompson, M.; Vummidi, B. R.; Wang, X. ; Wang, Y. ; Wang, Z. ; Waring, M. J. ; Willems, S.; Winssinger, N. ; Xia, B. ; Xiong, F. ; Xu, H. ; Xu, L. ; Yang, G. ; Zhang, G. ; Zhang, Y. ; Zhou, Y.

Title: DNA-Encoded Libraries

Print ISBN: 9783132455221; Online ISBN: 9783132437357; Book DOI: 10.1055/b000000342

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Membrane proteins play a crucial role in numerous physiological processes and are the most common targets of approved drugs. However, the difficulty in purifying membrane proteins has limited the application of DNA-encoded libraries (DELs) for these targets in drug discovery campaigns. In this chapter, two methodologies for the selection of DELs against cell-surface proteins directly on live cells are presented. The first method employs covalent crosslinking to capture transient interactions between DNA-linked ligands and membrane proteins, facilitating the removal of non-crosslinked molecules through stringent washing. The second approach utilizes an engineered biotin ligase enzyme tag on the target to selectively biotinylate DNA-linked ligands through induced proximity. These methods successfully address challenges such as low target-protein concentration on live cells and the low efficiency in purifying DNA–membrane-protein conjugates, offering promising tools for small-molecule discovery targeting membrane proteins.

 
  • 1 Rask-Andersen M, Almén MS, Schiöth HB. Nat. Rev. Drug Discovery 2011; 10: 579
  • 2 Yin H, Flynn AD. Annu. Rev. Biomed. Eng. 2016; 18: 51
  • 3 Ahn S, Kahsai AW, Pani B, Wang Q.-T, Zhao S, Wall AL, Strachan RT, Staus DP, Wingler LM, Sun LD, Sinnaeve J, Choi M, Cho T, Xu TT, Hansen GM, Burnett MB, Lamerdin JE, Bassoni DL, Gavino BJ, Husemoen G, Olsen EK, Franch T, Costanzi S, Chen X, Lefkowitz RJ. Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 1708
  • 4 Brown DG, Brown GA, Centrella P, Certel K, Cooke RM, Cuozzo JW, Dekker N, Dumelin CE, Ferguson A, Fiez-Vandal C, Geschwindner S, Guié M.-A, Habeshian S, Keefe AD, Schlenker O, Sigel EA, Snijder A, Soutter HT, Sundström L, Troast DM, Wiggin G, Zhang J, Zhang Y, Clark MA. SLAS Discovery 2018; 23: 429
  • 5 Wu Z, Graybill TL, Zeng X, Platchek M, Zhang J, Bodmer VQ, Wisnoski DD, Deng J, Coppo FT, Yao G, Tamburino A, Scavello G, Franklin GJ, Mataruse S, Bedard KL, Ding Y, Chai J, Summerfield J, Centrella PA, Messer JA, Pope AJ, Israel DI. ACS Comb. Sci. 2015; 17: 722
  • 6 Oehler S, Catalano M, Scapozza I, Bigatti M, Bassi G, Favalli N, Mortensen MR, Samain F, Scheuermann J, Neri D. Chem.–Eur. J. 2021; 27: 8985
  • 7 Huang Y, Meng L, Nie Q, Zhou Y, Chen L, Yang S, Fung YME, Li X, Huang C, Cao Y, Li Y, Li X. Nat. Chem. 2021; 13: 77
  • 8 Cai B, Kim D, Akhand S, Sun Y, Cassell RJ, Alpsoy A, Dykhuizen EC, Van Rijn RM, Wendt MK, Krusemark CJ. J. Am. Chem. Soc. 2019; 141: 17057
  • 9 Cai B, Mhetre AB, Krusemark CJ. Chem. Sci. 2023; 14: 245
  • 10 Kubitz L, Bitsch S, Zhao X, Schmitt K, Deweid L, Roehrig A, Barazzone EC, Valerius O, Kolmar H, Béthune J. Commun. Biol. 2022; 5: 657
  • 11 Denton KE, Krusemark CJ. MedChemComm 2016; 7: 2020
  • 12 Balboni G, Onnis V, Congiu C, Zotti M, Sasaki Y, Ambo A, Bryant SD, Jinsmaa Y, Lazarus LH, Trapella C, Salvadori S. J. Med. Chem. 2006; 49: 5610
  • 13 Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, Mootha VK, Ting AY. Nat. Methods 2015; 12: 51
  • 14 Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY. PLoS Biol. 2011; 9: e1 001 041
  • 15 Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV. ACS Chem. Biol. 2012; 7: 1848
  • 16 Belardinelli L, Shryock JC, Ruble J, Monopoli A, Dionisotti S, Ongini E, Dennis DM, Baker SP. Circ. Res. 1996; 79: 1153
  • 17 Yu H, Li M, Wang W, Wang X. Acta Pharmacol. Sin. 2016; 37: 34
  • 18 Cai B, El Daibani A, Bai Y, Che T, Krusemark CJ. JACS Au 2023; 3: 1076