2.2 Metal-Promoted DEL-Compatible C—C Bond Forming Reactions
Book
Editors: Scheuermann, J. ; Li, Y.
Title: DNA-Encoded Libraries
Print ISBN: 9783132455221; Online ISBN: 9783132437357; Book DOI: 10.1055/b000000342
1st edition © 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
DNA-encoded library (DEL) technology relies on the availability of robust and DNA-compatible chemical transformations. Metal-promoted C—C bond forming reactions are widely applied for the synthesis of fine chemicals such as pharmaceuticals. However, their application in DEL technology represents a challenge due to the use of metal catalysts, high temperatures, and organic solvents. In this chapter, we report tailored conditions for the on-DNA application of the Suzuki, Sonogashira, Heck, and Giese reactions. The conditions presented in this chapter have been systematically explored across different DEL designs and structurally-diverse building blocks. By providing a comprehensive insight into the practical implementation of these metal-promoted C—C bond cross-coupling reactions, this review aims at expanding and promoting the application of these transformations in DEL construction.
Key words
DNA-encoded libraries - C—C bond formation - cross-coupling reactions - DEL synthesis - DNA-compatible reactions - Giese reaction - Heck reaction - Sonogashira coupling - Suzuki coupling - metal-catalyzed reactions- 1 Favalli N, Bassi G, Pellegrino C, Millul J, De Luca R, Cazzamalli S, Yang S, Trenner A, Mozaffari NL, Myburgh R, Moroglu M, Conway SJ, Sartori AA, Manz MG, Lerner RA, Vogt PK, Scheuermann J, Neri D. Nat. Chem. 2021; 13: 540
- 2 Litovchick A, Dumelin CE, Habeshian S, Gikunju D, Guié M.-A, Centrella P, Zhang Y, Sigel EA, Cuozzo JW, Keefe AD, Clark MA. Sci. Rep. 2015; 5: 10916
- 3 Satz AL, Brunschweiger A, Flanagan ME, Gloger A, Hansen NJV, Kuai L, Kunig VBK, Lu X, Madsen D, Marcaurelle LA, Mulrooney C, OʼDonovan G, Sakata S, Scheuermann J. Nat. Rev. Methods Primers 2022; 2: 3
- 4 Yang H, Medeiros PF, Raha K, Elkins P, Lind KE, Lehr R, Adams ND, Burgess JL, Schmidt SJ, Knight SD, Auger KR, Schaber MD, Franklin GJ, Ding Y, DeLorey JL, Centrella PA, Mataruse S, Skinner SR, Clark MA, Cuozzo JW, Evindar G. ACS Med. Chem. Lett. 2015; 6: 531
- 6 Satz AL, Cai J, Chen Y, Goodnow R, Gruber F, Kowalczyk A, Petersen A, Naderi-Oboodi G, Orzechowski L, Strebel Q. Bioconjugate Chem. 2015; 26: 1623
- 8 Ratnayake AS, Flanagan ME, Foley TL, Smith JD, Johnson JG, Bellenger J, Montgomery JI, Paegel BM. ACS Comb. Sci. 2019; 21: 650
- 16 Wang J, Lundberg H, Asai S, Martín-Acosta P, Chen JS, Brown S, Farrell W, Dushin RG, OʼDonnell CJ, Ratnayake AS, Richardson P, Liu Z, Qin T, Blackmond DG, Baran PS. Proc. Natl. Acad. Sci. U. S. A. 2018; 115: e6404
- 17 Xu H, Ma F, Wang N, Hou W, Xiong H, Lu F, Li J, Wang S, Ma P, Yang G, Lerner RA. Adv. Sci. (Weinheim, Ger.) 2019; 6: 1901 551
- 18 DʼAlterio MC, Casals-Cruañas È, Tzouras NV, Talarico G, Nolan SP, Poater A. Chem.–Eur. J. 2021; 27: 13481