Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00042
Base-Metal Catalysis 2

2.6 C—H Functionalization Catalyzed by Low-Valent Cobalt

More Information

Book

Editor: Yoshikai, N.

Authors: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Title: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Book DOI: 10.1055/b000000440

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This review summarizes representative examples of catalytic C—H functionalization reactions mediated by low-valent cobalt complexes. Catalysts generated by the reduction of cobalt(II) or cobalt(III) precatalysts in the presence of appropriate supporting ligands have been demonstrated to promote a variety of alkylation, alkenylation, and arylation reactions of aromatic C(sp2)—H bonds, often with the assistance of directing groups. Well-defined cobalt(0) and cobalt(–I) complexes have also proved to catalyze some of these reactions. Low-valent cobalt complexes supported by bis(phosphinomethyl)pyridine, terpyridine, and diimine ligands have been identified as viable catalysts for the borylation of C(sp2)—H and C(sp3)—H bonds, where the cobalt catalysts exhibit unique site selectivity compared with well-established iridium catalysts. Other reactions such as 1,4-cobalt migration, hydroacylation, and C—H activation involving cobaltacyclopentene intermediates are also discussed.

 
  • 1 Murahashi S. J. Am. Chem. Soc. 1955; 77: 6403
  • 2 Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
  • 3 Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
  • 4 Yoshino T, Matsunaga S. Adv. Organomet. Chem. 2017; 68: 197
  • 5 Kommagalla Y, Chatani N. Coord. Chem. Rev. 2017; 350: 117
  • 6 Yoshino T, Matsunaga S. Synlett 2019; 30: 1384
  • 7 Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. ChemSusChem 2020; 13: 3306
  • 8 Wei D, Zhu X, Niu J.-L, Song M.-P. ChemCatChem 2016; 8: 1242
  • 9 Gao K, Lee P.-S, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2010; 132: 12249
  • 10 Ding Z, Yoshikai N. Angew. Chem. Int. Ed. 2012; 51: 4698
  • 11 Lee P.-S, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2011; 133: 17283
  • 12 Yamakawa T, Yoshikai N. Tetrahedron 2013; 69: 4459
  • 13 Yamakawa T, Yoshikai N. Org. Lett. 2013; 15: 196
  • 14 Fallon BJ, Derat E, Amatore M, Aubert C, Chemla F, Ferreira F, Perez-Luna A, Petit M. J. Am. Chem. Soc. 2015; 137: 2448
  • 15 Fallon BJ, Garsi JB, Derat E, Amatore M, Aubert C, Petit M. ACS Catal. 2015; 5: 7493
  • 16 Fallon BJ, Derat E, Amatore M, Aubert C, Chemla F, Ferreira F, Perez-Luna A, Petit M. Org. Lett. 2016; 18: 2292
  • 17 Suslick BA, Tilley TD. J. Am. Chem. Soc. 2020; 142: 11203
  • 18 Ding Z, Yoshikai N. Org. Lett. 2010; 12: 4180
  • 19 Wang C.-S, Di Monaco S, Thai AN, Rahman MS, Pang BP, Wang C, Yoshikai N. J. Am. Chem. Soc. 2020; 142: 12878
  • 20 Wu J, Gao W.-X, Huang X.-B, Zhou Y.-B, Liu M.-C, Wu H.-Y. Org. Chem. Front. 2021; 8: 6048
  • 21 Tan B.-H, Dong J, Yoshikai N. Angew. Chem. Int. Ed. 2012; 51: 9610
  • 22 Jin MY, Yoshikai N. J. Org. Chem. 2011; 76: 1972
  • 23 Moselage M, Sauermann N, Richter SC, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
  • 24 Sauermann N, Loup J, Kootz D, Yatham VR, Berkessel A, Ackermann L. Synthesis 2017; 49: 3476
  • 25 Lee P.-S, Xu W, Yoshikai N. Adv. Synth. Catal. 2017; 359: 4340
  • 26 Song W, Ackermann L. Angew. Chem. Int. Ed. 2012; 51: 8251
  • 27 Punji B, Song W, Shevchenko GA, Ackermann L. Chem.–Eur. J. 2013; 19: 10605
  • 28 Li J, Ackermann L. Chem.–Eur. J. 2015; 21: 5718
  • 29 Mei R, Ackermann L. Adv. Synth. Catal. 2016; 358: 2443
  • 30 Gao K, Lee P.-S, Long C, Yoshikai N. Org. Lett. 2012; 14: 4234
  • 31 Xu W, Yoshikai N. Chem. Sci. 2017; 8: 5299
  • 32 Jacob N, Zaid Y, Oliveira JCA, Ackermann L, Wencel-Delord J. J. Am. Chem. Soc. 2022; 144: 798
  • 33 Li B, Wu Z.-H, Gu Y.-F, Sun C.-L, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 1109
  • 34 Gao K, Yoshikai N. J. Am. Chem. Soc. 2011; 133: 400
  • 35 Lee P.-S, Yoshikai N. Angew. Chem. Int. Ed. 2013; 52: 1240
  • 36 Dong J, Lee P.-S, Yoshikai N. Chem. Lett. 2013; 42: 1140
  • 37 Xu W, Yoshikai N. Angew. Chem. Int. Ed. 2014; 53: 14166
  • 38 Xu W, Yoshikai N. Org. Lett. 2018; 20: 1392
  • 39 Lee P.-S, Yoshikai N. Org. Lett. 2015; 17: 22
  • 40 Xu W, Pek JH, Yoshikai N. Adv. Synth. Catal. 2016; 358: 2564
  • 41 Suslick BA, Tilley TD. Org. Lett. 2021; 23: 1495
  • 42 Ilies L, Chen Q, Zeng X, Nakamura E. J. Am. Chem. Soc. 2011; 133: 5221
  • 43 Gao K, Yoshikai N. Angew. Chem. Int. Ed. 2011; 50: 6888
  • 44 Xu W, Yoshikai N. Angew. Chem. Int. Ed. 2016; 55: 12731
  • 45 Ding Z, Yoshikai N. Angew. Chem. Int. Ed. 2013; 52: 8574
  • 46 Yamakawa T, Yoshikai N. Chem.–Asian J. 2014; 9: 1242
  • 47 Yang J, Yoshikai N. J. Am. Chem. Soc. 2014; 136: 16748
  • 48 Yang J, Rérat A, Lim YJ, Gosmini C, Yoshikai N. Angew. Chem. Int. Ed. 2017; 56: 2449
  • 49 Kim DK, Riedel J, Kim RS, Dong VM. J. Am. Chem. Soc. 2017; 139: 10208
  • 50 Yang J, Mori Y, Yamanaka M, Yoshikai N. Chem.–Eur. J. 2020; 26: 8302
  • 51 Yang J, Seto YW, Yoshikai N. ACS Catal. 2015; 5: 3054
  • 52 Yang J, Yoshikai N. Angew. Chem. Int. Ed. 2016; 55: 2870
  • 53 Santhoshkumar R, Mannathan S, Cheng C.-H. Org. Lett. 2014; 16: 4208
  • 54 Santhoshkumar R, Mannathan S, Cheng C.-H. J. Am. Chem. Soc. 2015; 137: 16116
  • 55 Whyte A, Torelli A, Mirabi B, Prieto L, Rodriguez JF, Lautens M. J. Am. Chem. Soc. 2020; 142: 9510
  • 56 Whitehurst WG, Kim J, Koenig SG, Chirik PJ. J. Am. Chem. Soc. 2022; 144: 4530
  • 57 Chen Q, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 428
  • 58 Gao K, Yoshikai N. J. Am. Chem. Soc. 2013; 135: 9279
  • 59 Gao K, Yamakawa T, Yoshikai N. Synthesis 2014; 46: 2024
  • 60 Yamakawa T, Seto YW, Yoshikai N. Synlett 2015; 26: 340
  • 61 Sun Q, Yoshikai N. Org. Chem. Front. 2018; 5: 2214
  • 62 Sun Q, Yoshikai N. Org. Chem. Front. 2018; 5: 582
  • 63 Sun Q, Yoshikai N. Org. Lett. 2019; 21: 5238
  • 64 Gao K, Yoshikai N. Chem. Commun. (Cambridge) 2012; 48: 4305
  • 65 Gao K, Paira R, Yoshikai N. Adv. Synth. Catal. 2014; 356: 1486
  • 66 Xu W, Paira R, Yoshikai N. Org. Lett. 2015; 17: 4192
  • 67 Cong X, Zhai S, Zeng X. Org. Chem. Front. 2016; 3: 673
  • 68 Chen Q, Ilies L, Yoshikai N, Nakamura E. Org. Lett. 2011; 13: 3232
  • 69 Wang H, Zhang S, Wang Z, He M, Xu K. Org. Lett. 2016; 18: 5628
  • 70 Xu K, Tan Z, Zhang H, Zhang S. Synthesis 2017; 49: 3931
  • 71 Schmiel D, Butenschön H. Eur. J. Org. Chem. 2017; 3041
  • 72 Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
  • 73 Obligacion JV, Semproni SP, Chirik PJ. J. Am. Chem. Soc. 2014; 136: 4133
  • 74 Schaefer BA, Margulieux GW, Small BL, Chirik PJ. Organometallics 2015; 34: 1307
  • 75 Obligacion JV, Semproni SP, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2016; 138: 10645
  • 76 Leonard NG, Bezdek MJ, Chirik PJ. Organometallics 2017; 36: 142
  • 77 Obligacion JV, Bezdek MJ, Chirik PJ. J. Am. Chem. Soc. 2017; 139: 2825
  • 78 Pabst TP, Obligacion JV, Rochette E, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2019; 141: 15378
  • 79 Pabst TP, Chirik PJ. J. Am. Chem. Soc. 2022; 144: 6465
  • 80 Pabst TP, Quach L, MacMillan KT, Chirik PJ. Chem 2021; 7: 237
  • 81 Roque JB, Pabst TP, Chirik PJ. ACS Catal. 2022; 12: 8877
  • 82 Michigami K, Mita T, Sato Y. J. Am. Chem. Soc. 2017; 139: 6094
  • 83 Mita T, Hanagata S, Michigami K, Sato Y. Org. Lett. 2017; 19: 5876
  • 84 Mita T, Uchiyama M, Michigami K, Sato Y. Beilstein J. Org. Chem. 2018; 14: 2012
  • 85 Mita T, Uchiyama M, Sato Y. Adv. Synth. Catal. 2020; 362: 1275
  • 86 Palmer WN, Obligacion JV, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2016; 138: 766
  • 87 Palmer WN, Chirik PJ. ACS Catal. 2017; 7: 5674