Yoshikai, N. : 2023 Science of Synthesis, 2022/5: Base-Metal Catalysis 1 DOI: 10.1055/sos-SD-238-00298
Base-Metal Catalysis 1

1.17 Nickel-Catalyzed Cross Coupling via C—O and C—N Activation

More Information

Book

Editor: Yoshikai, N.

Authors: Chatani, N. ; Chemler, S. R. ; Chen, P. ; Dai, H.-X. ; Delcaillau, T.; Fujihara, T. ; Huang, J. ; Iwabuchi, Y. ; Kennedy-Ellis, J. J. ; Ko, C.; Koh, M. J. ; Lee, B. C.; Li, Y.; Lin, L.; Liu, G. ; Ma, D. ; Morandi, B. ; Nakao, Y. ; Ouyang, Y. ; Pang, X.; Qing, F.-L. ; Ren, Y. ; Sasano, Y. ; Shang, Y. ; Shou, J.-Y.; Shu, X.-Z. ; Su, W. ; Tobisu, M. ; Wang, C. ; Xiong, T. ; Xu, H.; Yang, F.; Yoshida, T.; Zhu, S.

Title: Base-Metal Catalysis 1

Print ISBN: 9783132453807; Online ISBN: 9783132453821; Book DOI: 10.1055/b000000441

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The use of a suitable nickel catalyst enables inert phenol derivatives (i.e., aryl ethers and esters) and aniline derivatives to be used as aryl halide surrogates in cross-coupling reactions, via the activation of C—O and C—N bonds. In this review, standard procedures for such reactions are presented.

 
  • 1 Nolan SP, Navarro O, Comprehensive Organometallic Chemistry III. Crabtree RH, Mingos DMP. Elsevier; Oxford 2007. 11.
  • 2 Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E.-I. Wiley-Interscience; New York 2002
  • 3 Metal-Catalyzed Cross-Coupling Reactions. de Meijere A, Diederich F. Wiley VCH; Weinheim, Germany 2004
  • 4 Wenkert E, Michelotti EL, Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246
  • 5 Wenkert E, Michelotti EL, Swindell CS, Tingoli M. J. Org. Chem. 1984; 49: 4894
  • 6 Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
  • 7 Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem.–Eur. J. 2011; 17: 1728
  • 8 Tobisu M, Chatani N. Top. Organomet. Chem. 2013; 44: 35
  • 9 Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
  • 10 Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
  • 11 Qiu Z, Li C.-J. Chem. Rev. 2020; 120: 10454
  • 12 Tobisu M, Chatani N, Ni- and Fe-Based Cross-Coupling Reactions. Correa A. Springer; Cham, Switzerland 2017
  • 13 Tobisu M, Chatani N, Topics in Organometallic Chemistry. Dixneuf PH, Soulé J.-F. Springer; Cham, Switzerland 2018. 63.
  • 14 Tobisu M, Nickel Catalysis in Organic Synthesis: Methods and Reactions. Ogoshi S. Wiley VCH; Weinheim, Germany 2020
  • 15 Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
  • 16 Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
  • 17 Garcıá-Cárceles J, Bahou KA, Bower JF. ACS Catal. 2020; 10: 12738
  • 18 Li Z, Zhang S.-L, Fu Y, Guo Q.-X, Liu L. J. Am. Chem. Soc. 2009; 131: 8815
  • 19 Shimasaki T, Konno Y, Tobisu M, Chatani N. Org. Lett. 2009; 11: 4890
  • 20 Meng L, Kamada Y, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2013; 52: 10048
  • 21 Sengupta S, Leite M, Raslan DS, Quesnelle C, Snieckus V. J. Org. Chem. 1992; 57: 4066
  • 22 Ohtsuki A, Sakurai S, Tobisu M, Chatani N. Chem. Lett. 2016; 45: 1277
  • 23 Yoshikai N, Matsuda H, Nakamura E. J. Am. Chem. Soc. 2009; 131: 9590
  • 24 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 25 Miyaura N. Top. Curr. Chem. 2002; 219: 11
  • 26 Suzuki A, Brown HC. Organic Synthesis via Boranes. Aldrich Chemical Co.; Milwaukee 2003
  • 27 Miyaura N. Bull. Chem. Soc. Jpn. 2008; 81: 1535
  • 28 Guan B.-T, Wang Y, Li B.-J, Yu D.-G, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 14468
  • 29 Quasdorf KW, Tian X, Garg NK. J. Am. Chem. Soc. 2008; 130: 14422
  • 30 Xu L, Li B.-J, Wu Z.-H, Lu X.-Y, Guan B.-T, Wang B.-Q, Zhao K.-Q, Shi Z.-J. Org. Lett. 2010; 12: 884
  • 31 Quasdorf KW, Riener M, Petrova KV, Garg NK. J. Am. Chem. Soc. 2009; 131: 17748
  • 32 Antoft-Finch A, Blackburn T, Snieckus V. J. Am. Chem. Soc. 2009; 131: 17750
  • 33 Ohtsuki A, Yanagisawa K, Furukawa T, Tobisu M, Chatani N. J. Org. Chem. 2016; 81: 9409
  • 34 Kuwano R, Shimizu R. Chem. Lett. 2011; 40: 913
  • 35 Liu X, Jia J, Rueping M. ACS Catal. 2017; 7: 4491
  • 36 Guo L, Hsiao C.-C, Yue H, Liu X, Rueping M. ACS Catal. 2016; 6: 4438
  • 37 Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
  • 38 Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
  • 39 Davies HML, Morton D. J. Org. Chem. 2016; 81: 343
  • 40 Miura M, Satoh T, Hirano K. Bull. Chem. Soc. Jpn. 2014; 87: 751
  • 41 Rej S, Das A, Chatani N. Coord. Chem. Rev. 2021; 431: 213683
  • 42 Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 169
  • 43 Muto K, Hatakeyama T, Yamaguchi J, Itami K. Chem. Sci. 2015; 6: 6792
  • 44 Iwai T, Harada T, Shimada H, Asano K, Sawamura M. ACS Catal. 2017; 7: 1681
  • 45 Wang Y, Wu S.-B, Shi W.-J, Shi Z.-J. Org. Lett. 2016; 18: 2548
  • 46 Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
  • 47 Takise R, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2014; 53: 6791
  • 48 Derhamine SA, Krachko T, Monteiro N, Pilet G, Schranck G, Tlili A, Amgoune A. Angew. Chem. Int. Ed. 2020; 59: 18948
  • 49 Cornella J, Jackson EP, Martin R. Angew. Chem. Int. Ed. 2015; 54: 4075
  • 50 Ehle AR, Zhou Q, Watson MP. Org. Lett. 2012; 14: 1202
  • 51 Takise R, Itami K, Yamaguchi J. Org. Lett. 2016; 18: 4428
  • 52 Hu W.-Q, Pan S, Xu X.-H, Vicic DA, Qing F.-L. Angew. Chem. Int. Ed. 2020; 59: 16076
  • 53 Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
  • 54 Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
  • 55 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
  • 56 Shimasaki T, Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2010; 49: 2929
  • 57 Mesganaw T, Silberstein AL, Ramgren SD, Fine Nathel NF, Hong X, Liu P, Garg NK. Chem. Sci. 2011; 2: 1766
  • 58 Hie L, Ramgren SD, Mesganaw T, Garg NK. Org. Lett. 2012; 14: 4182
  • 59 Yue H, Guo L, Liu X, Rueping M. Org. Lett. 2017; 19: 1788
  • 60 Huang K, Yu D.-G, Zheng S.-F, Wu Z.-H, Shi Z.-J. Chem.–Eur. J. 2011; 17: 786
  • 61 Tobisu M, Yamakawa K, Shimasaki T, Chatani N. Chem. Commun. (Cambridge) 2011; 47: 2946
  • 62 Mesganaw T, Fine Nathel NF, Garg NK. Org. Lett. 2012; 14: 2918
  • 63 Xi X, Chen T, Zhang J.-S, Han L.-B. Chem. Commun. (Cambridge) 2018; 54: 1521
  • 64 Fujihara T, Nogi K, Xu T, Terao J, Tsuji Y. J. Am. Chem. Soc. 2012; 134: 9106
  • 65 Correa A, León T, Martin R. J. Am. Chem. Soc. 2014; 136: 1062
  • 66 Correa A, Martin R. J. Am. Chem. Soc. 2014; 136: 7253
  • 67 Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428
  • 68 Guan B.-T, Xiang S.-K, Wu T, Sun Z.-P, Wang B.-Q, Zhao K.-Q, Shi Z.-J. Chem. Commun. (Cambridge) 2008; 1437
  • 69 Tobisu M, Takahira T, Chatani N. Org. Lett. 2015; 17: 4352
  • 70 Tobisu M, Takahira T, Ohtsuki A, Chatani N. Org. Lett. 2015; 17: 680
  • 71 Tobisu M, Takahira T, Morioka T, Chatani N. J. Am. Chem. Soc. 2016; 138: 6711
  • 72 Chen X.-C, Nishinaga S, Okuda Y, Zhao J.-J, Xu J, Mori H, Nishihara Y. Org. Chem. Front. 2015; 2: 536
  • 73 Zhang J, Sun T, Zhang Z, Cao H, Bai Z, Cao Z.-C. J. Am. Chem. Soc. 2021; 143: 18380
  • 74 Tobisu M, Shimasaki T, Chatani N. Angew. Chem. Int. Ed. 2008; 47: 4866
  • 75 Tobisu M, Yasutome A, Kinuta H, Nakamura K, Chatani N. Org. Lett. 2014; 16: 5572
  • 76 Schwarzer MC, Konno R, Hojo T, Ohtsuki A, Nakamura K, Yasutome A, Takahashi H, Shimasaki T, Tobisu M, Chatani N, Mori S. J. Am. Chem. Soc. 2017; 139: 10347
  • 77 Kawashima Y, Furukawa T, Chatani N, Tobisu M. Org. Synth. 2019; 96: 36
  • 78 Guo L, Liu X, Baumann C, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 15415
  • 79 Tobisu M, Shimasaki T, Chatani N. Chem. Lett. 2009; 38: 710
  • 80 Tobisu M, Yasutome A, Yamakawa K, Shimasaki T, Chatani N. Tetrahedron 2012; 68: 5157
  • 81 Wiensch EM, Montgomery J. Angew. Chem. Int. Ed. 2018; 57: 11045
  • 82 Zarate C, Manzano R, Martin R. J. Am. Chem. Soc. 2015; 137: 6754
  • 83 Nakamura K, Tobisu M, Chatani N. Org. Lett. 2015; 17: 6142
  • 84 Pein WL, Wiensch EM, Montgomery J. Org. Lett. 2021; 23: 4588
  • 85 Álvarez-Bercedo P, Martin R. J. Am. Chem. Soc. 2010; 132: 17352
  • 86 Sergeev AG, Hartwig JF. Science (Washington, D. C.) 2011; 332: 439
  • 87 Wiensch EM, Todd DP, Montgomery J. ACS Catal. 2017; 7: 5568
  • 88 Igarashi T, Haito A, Chatani N, Tobisu M. ACS Catal. 2018; 8: 7475
  • 89 Tobisu M, Morioka T, Ohtsuki A, Chatani N. Chem. Sci. 2015; 6: 3410
  • 90 Harris MR, Hanna LE, Greene MA, Moore CE, Jarvo ER. J. Am. Chem. Soc. 2013; 135: 3303
  • 91 Zhang S.-Q, Taylor BLH, Ji C.-L, Gao Y, Harris MR, Hanna LE, Jarvo ER, Houk KN, Hong X. J. Am. Chem. Soc. 2017; 139: 12994
  • 92 Zhou Q, Srinivas HD, Dasgupta S, Watson MP. J. Am. Chem. Soc. 2013; 135: 3307
  • 93 Tollefson EJ, Dawson DD, Osborne CA, Jarvo ER. J. Am. Chem. Soc. 2014; 136: 14951
  • 94 Martin-Montero R, Krolikowski T, Zarate C, Manzano R, Martin R. Synlett 2017; 28: 2604
  • 95 Guo Y.-A, Liang T, Kim SW, Xiao H, Krische MJ. J. Am. Chem. Soc. 2017; 139: 6847
  • 96 Konev MO, Hanna LE, Jarvo ER. Angew. Chem. Int. Ed. 2016; 55: 6730
  • 97 Taylor BLH, Swift EC, Waetzig JD, Jarvo ER. J. Am. Chem. Soc. 2011; 133: 389
  • 98 Greene MA, Yonova IM, Williams FJ, Jarvo ER. Org. Lett. 2012; 14: 4293
  • 99 Taylor BLH, Harris MR, Jarvo ER. Angew. Chem. Int. Ed. 2012; 51: 7790
  • 100 Yonova IM, Johnson AG, Osborne CA, Moore CE, Morrissette NS, Jarvo ER. Angew. Chem. Int. Ed. 2014; 53: 2422
  • 101 Harris MR, Konev MO, Jarvo ER. J. Am. Chem. Soc. 2014; 136: 7825
  • 102 Tollefson EJ, Erickson LW, Jarvo ER. J. Am. Chem. Soc. 2015; 137: 9760
  • 103 Kajita Y, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2008; 130: 17226
  • 104 Gooßen LJ, Paetzold J. Angew. Chem. Int. Ed. 2002; 41: 1237
  • 105 Chatani N, Tatamidani H, Ie Y, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2001; 123: 4849
  • 106 Tatamidani H, Kakiuchi F, Chatani N. Org. Lett. 2004; 6: 3597
  • 107 Tatamidani H, Yokota K, Kakiuchi F, Chatani N. J. Org. Chem. 2004; 69: 5615
  • 108 Ishizu J, Yamamoto T, Yamamoto A. Chem. Lett. 1976; 5: 1091
  • 109 Yamamoto T, Ishizu J, Kohara T, Komiya S, Yamamoto A. J. Am. Chem. Soc. 1980; 102: 3758
  • 110 Muto K, Yamaguchi J, Musaev DG, Itami K. Nat. Commun. 2015; 6: 7508
  • 111 Chatupheeraphat A, Liao H.-H, Srimontree W, Guo L, Minenkov Y, Poater A, Cavallo L, Rueping M. J. Am. Chem. Soc. 2018; 140: 3724
  • 112 Zheng Y.-L, Xie P.-P, Daneshfar O, Houk KN, Hong X, Newman SG. Angew. Chem. Int. Ed. 2021; 60: 13476
  • 113 Yue H, Guo L, Liao H.-H, Cai Y, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 4282
  • 114 Takise R, Isshiki R, Muto K, Itami K, Yamaguchi J. J. Am. Chem. Soc. 2017; 139: 3340
  • 115 Guo L, Rueping M. Chem.–Eur. J. 2016; 22: 16787
  • 116 Pu X, Hu J, Zhao Y, Shi Z. ACS Catal. 2016; 6: 6692
  • 117 Guo L, Chatupheeraphat A, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 11810
  • 118 Yue H, Zhu C, Rueping M. Org. Lett. 2018; 20: 385
  • 119 Isshiki R, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 1150
  • 120 Yue H, Guo L, Lee S.-C, Liu X, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 3972
  • 121 Amaike K, Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 13573
  • 122 Ueno S, Chatani N, Kakiuchi F. J. Am. Chem. Soc. 2007; 129: 6098
  • 123 Koreeda T, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2009; 131: 7238
  • 124 Koreeda T, Kochi T, Kakiuchi F. Organometallics 2013; 32: 682
  • 125 Zhao Y, Snieckus V. Org. Lett. 2014; 16: 3200
  • 126 Wade Wolfe MM, Shanahan JP, Kampf JW, Szymczak NK. J. Am. Chem. Soc. 2020; 142: 18698
  • 127 Zhao Q, Zhang J, Szostak M. ACS Catal. 2019; 9: 8171
  • 128 Xu J.-X, Zhao F, Yuan Y, Wu X.-F. Org. Lett. 2020; 22: 2756
  • 129 Koreeda T, Kochi T, Kakiuchi F. J. Organomet. Chem. 2013; 741–742: 148
  • 130 Zhang Z.-B, Ji C.-L, Yang C, Chen J, Hong X, Xia J.-B. Org. Lett. 2019; 21: 1226
  • 131 Tobisu M, Nakamura K, Chatani N. J. Am. Chem. Soc. 2014; 136: 5587
  • 132 Cao Z.-C, Xie S.-J, Fang H, Shi Z.-J. J. Am. Chem. Soc. 2018; 140: 13575
  • 133 Cao Z.-C, Li X.-L, Luo Q.-Y, Fang H, Shi Z.-J. Org. Lett. 2018; 20: 1995
  • 134 Meng G, Zhang J, Szostak M. Chem. Rev. 2021; 121: 12746
  • 135 Szostak R, Meng G, Szostak M. J. Org. Chem. 2017; 82: 6373
  • 136 Szostak R, Shi S, Meng G, Lalancette R, Szostak M. J. Org. Chem. 2016; 81: 8091
  • 137 Szostak R, Szostak M. Org. Lett. 2018; 20: 1342
  • 138 Ielo L, Pace V, Holzer W, Rahman MM, Meng G, Szostak R, Szostak M. Chem.–Eur. J. 2020; 26: 16246
  • 139 Wang H, Zhang S.-Q, Hong X. Chem. Commun. (Cambridge) 2019; 55: 11330
  • 140 Meng G, Shi S, Szostak M. Synlett 2016; 27: 2530
  • 141 Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
  • 142 Adachi S, Kumagai N, Shibasaki M. Tetrahedron Lett. 2018; 59: 1147
  • 143 Meng G, Szostak M. Eur. J. Org. Chem. 2018; 2352
  • 144 Liu C, Szostak M. Org. Biomol. Chem. 2018; 16: 7998
  • 145 Chaudhari MB, Gnanaprakasam B. Chem.–Asian J. 2019; 14: 76
  • 146 Hie L, Fine Nathel NF, Shah TK, Baker EL, Hong X, Yang Y.-F, Liu P, Houk KN, Garg NK. Nature (London) 2015; 524: 79
  • 147 Weires NA, Caspi DD, Garg NK. ACS Catal. 2017; 7: 4381
  • 148 Dander JE, Weires NA, Garg NK. Org. Lett. 2016; 18: 3934
  • 149 Liu X, Hsiao C.-C, Guo L, Rueping M. Org. Lett. 2018; 20: 2976