Yoshikai, N. : 2023 Science of Synthesis, 2022/5: Base-Metal Catalysis 1 DOI: 10.1055/sos-SD-238-00290
Base-Metal Catalysis 1

1.16 Nickel-Catalyzed Bond Activation for Functional-Group Shuttling

More Information

Book

Editor: Yoshikai, N.

Authors: Chatani, N. ; Chemler, S. R. ; Chen, P. ; Dai, H.-X. ; Delcaillau, T.; Fujihara, T. ; Huang, J. ; Iwabuchi, Y. ; Kennedy-Ellis, J. J. ; Ko, C.; Koh, M. J. ; Lee, B. C.; Li, Y.; Lin, L.; Liu, G. ; Ma, D. ; Morandi, B. ; Nakao, Y. ; Ouyang, Y. ; Pang, X.; Qing, F.-L. ; Ren, Y. ; Sasano, Y. ; Shang, Y. ; Shou, J.-Y.; Shu, X.-Z. ; Su, W. ; Tobisu, M. ; Wang, C. ; Xiong, T. ; Xu, H.; Yang, F.; Yoshida, T.; Zhu, S.

Title: Base-Metal Catalysis 1

Print ISBN: 9783132453807; Online ISBN: 9783132453821; Book DOI: 10.1055/b000000441

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Functional-group shuttling, for example through shuttle catalysis or single-bond metathesis, has recently emerged as a powerful tool in targeted organic synthesis. This concept offers several advantages in comparison with traditional catalytic reactions. It enables the use of more-benign surrogates as formal functional-group donors, leading to safer reaction profiles. These reactions also often complement traditional cross-coupling reactions by allowing for base-free conditions, since no external inorganic reagent is required. Lately, nickel has emerged as an extremely useful transition metal in catalysis, complementing and often even surpassing the efficiency of noble metals, such as palladium. The focus of this chapter is to summarize recent developments in nickel-catalyzed functional-group-shuttling reactions.

 
  • 1 Bhawal BN, Morandi B. Angew. Chem. Int. Ed. 2019; 58: 10074
  • 2 Knoevenagel E, Bergdolt B. Chem. Ber. 1903; 36: 2857
  • 3 Chirik P, Morris R. Acc. Chem. Res. 2015; 48: 2495
  • 4 Nakao Y, Oda S, Hiyama T. J. Am. Chem. Soc. 2004; 126: 13904
  • 5 Nakao Y, Yada A, Ebata S, Hiyama T. J. Am. Chem. Soc. 2007; 129: 2428
  • 6 Fang X, Yu P, Morandi B. Science (Washington, D. C.) 2016; 351: 832
  • 7 Reisenbauer JC, Bhawal BN, Jelmini N, Morandi B. Org. Process Res. Dev. 2022; 26: 1165
  • 8 Bhawal BN, Reisenbauer JC, Ehinger C, Morandi B. J. Am. Chem. Soc. 2020; 142: 10914
  • 9 Yu P, Morandi B. Angew. Chem. Int. Ed. 2017; 56: 15693
  • 10 Bajo S, Laidlaw G, Kennedy AR, Sproules S, Nelson DJ. Organometallics 2017; 36: 1662
  • 11 De La Higuera Macias M, Arndtsen BA. J. Am. Chem. Soc. 2018; 140: 10140
  • 12 Lee YH, Morandi B. Nat. Chem. 2018; 10: 1016
  • 13 Delcaillau T, Boehm P, Morandi B. J. Am. Chem. Soc. 2021; 143: 3723
  • 14 Delcaillau T, Bismuto A, Lian Z, Morandi B. Angew. Chem. Int. Ed. 2020; 59: 2110
  • 15 Boehm P, Müller P, Finkelstein P, Rivero-Crespo MA, Ebert M.-O, Trapp N, Morandi B. J. Am. Chem. Soc. 2022; 144: 13096
  • 16 Isshiki R, Inayama N, Muto K, Yamaguchi J. ACS Catal. 2020; 10: 3490
  • 17 Isshiki R, Kurosawa MB, Muto K, Yamaguchi J. J. Am. Chem. Soc. 2021; 143: 10333