Yoshikai, N. : 2023 Science of Synthesis, 2022/5: Base-Metal Catalysis 1 DOI: 10.1055/sos-SD-238-00231
Base-Metal Catalysis 1

1.12 Nickel-Catalyzed Alkene Dicarbofunctionalization

More Information

Book

Editor: Yoshikai, N.

Authors: Chatani, N. ; Chemler, S. R. ; Chen, P. ; Dai, H.-X. ; Delcaillau, T.; Fujihara, T. ; Huang, J. ; Iwabuchi, Y. ; Kennedy-Ellis, J. J. ; Ko, C.; Koh, M. J. ; Lee, B. C.; Li, Y.; Lin, L.; Liu, G. ; Ma, D. ; Morandi, B. ; Nakao, Y. ; Ouyang, Y. ; Pang, X.; Qing, F.-L. ; Ren, Y. ; Sasano, Y. ; Shang, Y. ; Shou, J.-Y.; Shu, X.-Z. ; Su, W. ; Tobisu, M. ; Wang, C. ; Xiong, T. ; Xu, H.; Yang, F.; Yoshida, T.; Zhu, S.

Title: Base-Metal Catalysis 1

Print ISBN: 9783132453807; Online ISBN: 9783132453821; Book DOI: 10.1055/b000000441

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The transition-metal-catalyzed cross-coupling reactions of alkenyl compounds remain one of the most versatile ways of forming C—C bonds from organohalide and organometallic species. The application of inexpensive, readily available, and non-toxic base metals, such as nickel, as catalysts gives rise to a powerful approach to access highly substituted molecules via dicarbofunctionalization. A wide array of nucleophiles and/or electrophiles can be employed, and various mechanisms have been proposed. Generally, these mechanisms can be classified as redox-neutral, reductive, asymmetric, and photoredox dicarbofunctionalizations. In this chapter, we will highlight the recent advances made in the field of nickel-catalyzed alkene dicarbofunctionalization.

 
  • 1 Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
  • 2 Giri R, Shakhar KC . J. Org. Chem. 2018; 83: 3013
  • 3 Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science (Washington, D. C.) 2016; 352: 801
  • 4 Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science (Washington, D. C.) 2016; 351: 70
  • 5 Wickham LM, Giri R. Acc. Chem. Res. 2021; 54: 3415
  • 6 Dhungana RK, Shakhar KC , Basnet P, Giri R. Chem. Rec. 2018; 18: 1314
  • 7 Derosa J, Apolinar O, Kang T, Tran VT, Engle KM. Chem. Sci. 2020; 11: 4287
  • 8 Qi X, Diao T. ACS Catal. 2020; 10: 8542
  • 9 Xu H, Hu CT, Wang X, Diao T. Organometallics 2017; 36: 4099
  • 10 Derosa J, Tran VT, Boulous MN, Chen JS, Engle KM. J. Am. Chem. Soc. 2017; 139: 10657
  • 11 Derosa J, van der Puyl VA, Tran VT, Liu M, Engle KM. Chem. Sci. 2018; 9: 5278
  • 12 Pan R, Shi C, Zhang D, Tian Y, Guo S, Yao H, Lin A. Org. Lett. 2019; 21: 8915
  • 13 Dhungana RK, Shakhar KC , Basnet P, Aryal V, Chesley LJ, Giri R. ACS Catal. 2019; 9: 10887
  • 14 Li W, Boon JK, Zhao Y. Chem. Sci. 2018; 9: 600
  • 15 Jin Y, Wang C. Chem. Sci. 2019; 10: 1780
  • 16 Yang T, Chen X, Rao W, Koh MJ. Chem 2020; 6: 738
  • 17 Yang T, Jiang Y, Luo Y, Lim JJH, Lan Y, Koh MJ. J. Am. Chem. Soc. 2020; 142: 21410
  • 18 Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Giri R. J. Am. Chem. Soc. 2020; 142: 20930
  • 19 Li Y, Wang K, Ping Y, Wang Y, Kong W. Org. Lett. 2018; 20: 921
  • 20 Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
  • 21 Ehle AR, Zhou Q, Watson MP. Org. Lett. 2012; 14: 1202
  • 22 Seashore-Ludlow B, Somfai P. Org. Lett. 2012; 14: 3858
  • 23 Zheng Y, Newman SG. Angew. Chem. Int. Ed. 2019; 58: 18159
  • 24 Shakhar KC , Basnet P, Thapa S, Shrestha B, Giri R. J. Org. Chem. 2018; 83: 2920
  • 25 Yan C.-S, Peng Y, Xu X.-B, Wang Y.-W. Chem.–Eur. J. 2012; 18: 6039
  • 26 Kuang Y, Wang X, Anthony D, Diao T. Chem. Commun. (Cambridge) 2018; 54: 2558
  • 27 Lin Q, Diao T. J. Am. Chem. Soc. 2019; 141: 17937
  • 28 Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
  • 29 Malcolmson SJ, Meek SJ, Sattely ES, Schrock RR, Hoveyda AH. Nature (London) 2008; 456: 933
  • 30 Wu X, Luan B, Zhao W, He F, Wu X, Qu J, Chen Y. Angew. Chem. Int. Ed. 2022; 61: e202 111 598
  • 31 Till NA, Oh S, MacMillan DWC, Bird MJ. J. Am. Chem. Soc. 2021; 143: 9332
  • 32 Weires NA, Slutskyy Y, Overman LE. Angew. Chem. Int. Ed. 2019; 58: 8561
  • 33 Fan P, Lan Y, Zhang C, Wang C. J. Am. Chem. Soc. 2020; 142: 2180
  • 34 Shrestha B, Basnet P, Dhungana RK, Shakhar KC , Thapa S, Sears JM, Giri R. J. Am. Chem. Soc. 2017; 139: 10653
  • 35 Hu X. Chem. Sci. 2011; 2: 1867
  • 36 Wang H, Liu C.-F, Martin RT, Gutierrez O, Koh MJ. Nat. Chem. 2022; 14: 188
  • 37 Zhao X, Tu H.-Y, Guo L, Zhu S, Qing F.-L, Chu L. Nat. Commun. 2018; 9: 3488
  • 38 García-Domínguez A, Li Z, Nevado C. J. Am. Chem. Soc. 2017; 139: 6835
  • 39 Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
  • 40 Apolinar O, Kang T, Alturaifi TM, Bedekar PG, Rubel CZ, Derosa J, Sanchez BB, Wong QN, Sturgell EJ, Chen JS, Wisniewski SR, Liu P, Engle KM. ChemRxiv 2022;
  • 41 García-Domínguez A, Mondal R, Nevado C. Angew. Chem. Int. Ed. 2019; 58: 12286
  • 42 Corcé V, Chamoreau L, Derat E, Goddard J, Ollivier C, Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
  • 43 Mega RS, Duong VK, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2020; 59: 4375
  • 44 Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152