Yoshikai, N. : 2023 Science of Synthesis, 2022/5: Base-Metal Catalysis 1 DOI: 10.1055/sos-SD-238-00208
Base-Metal Catalysis 1

1.11 Nickel-Catalyzed Enantioselective Reductive Cross-Coupling Reactions

More Information

Book

Editor: Yoshikai, N.

Authors: Chatani, N. ; Chemler, S. R. ; Chen, P. ; Dai, H.-X. ; Delcaillau, T.; Fujihara, T. ; Huang, J. ; Iwabuchi, Y. ; Kennedy-Ellis, J. J. ; Ko, C.; Koh, M. J. ; Lee, B. C.; Li, Y.; Lin, L.; Liu, G. ; Ma, D. ; Morandi, B. ; Nakao, Y. ; Ouyang, Y. ; Pang, X.; Qing, F.-L. ; Ren, Y. ; Sasano, Y. ; Shang, Y. ; Shou, J.-Y.; Shu, X.-Z. ; Su, W. ; Tobisu, M. ; Wang, C. ; Xiong, T. ; Xu, H.; Yang, F.; Yoshida, T.; Zhu, S.

Title: Base-Metal Catalysis 1

Print ISBN: 9783132453807; Online ISBN: 9783132453821; Book DOI: 10.1055/b000000441

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Nickel-catalyzed enantioselective reductive cross-coupling reactions enable simple and efficient synthesis of enantioenriched compounds, with high functionality tolerance, through circumventing the use of pregenerated organometallics. In this chapter, the most quintessential examples of the recent advances in this field have been summarized, and the contents are organized according to the reaction types.

 
  • 1 Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
  • 2 Moragas T, Correa A, Martin R. Chem.–Eur. J. 2014; 20: 8242
  • 3 Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
  • 4 Weix DJ. Acc. Chem. Res. 2015; 48: 1767
  • 5 Richmond E, Moran J. Synthesis 2018; 50: 499
  • 6 Poremba KE, Dibrell SE, Reisman SE. ACS Catal. 2020; 10: 8237
  • 7 Jin Y, Wang C. Synlett 2020; 31: 1843
  • 8 Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
  • 9 Cherney AH, Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
  • 10 Hofstra JL, Cherney AH, Ordner CM, Reisman SE. J. Am. Chem. Soc. 2018; 140: 139
  • 11 Poremba KE, Kadunce NT, Suzuki N, Cherney AH, Reisman SE. J. Am. Chem. Soc. 2017; 139: 5684
  • 12 Suzuki N, Hofstra JL, Poremba KE, Reisman SE. Org. Lett. 2017; 19: 2150
  • 13 Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2015; 137: 10480
  • 14 Guan H, Zhang Q, Walsh PJ, Mao J. Angew. Chem. Int. Ed. 2020; 59: 5172
  • 15 Lau SH, Borden MA, Steiman TJ, Wang LS, Parasram M, Doyle AG. J. Am. Chem. Soc. 2021; 143: 15873
  • 16 Woods BP, Orlandi M, Huang C.-Y, Sigman MS, Doyle AG. J. Am. Chem. Soc. 2017; 139: 5688
  • 17 Ding D, Dong H, Wang C. iScience 2020; 23: 101017
  • 18 Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
  • 19 Jin Y, Wang C. Angew. Chem. Int. Ed. 2019; 58: 6722
  • 20 Jin Y, Yang H, Wang C. Org. Lett. 2020; 22: 2724
  • 21 Tian Z.-X, Qiao J.-B, Xu G.-L, Pang X, Qi L, Ma W.-Y, Zhao Z.-Z, Duan J, Du Y.-F, Su P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 7637
  • 22 Qiao J.-B, Zhang Y.-Q, Yao Q.-W, Zhao Z.-Z, Peng X, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 12961
  • 23 Lan Y, Wang C. Commun. Chem. 2020; 3: 45
  • 24 Wu X, Qu J, Chen Y. J. Am. Chem. Soc. 2020; 142: 15654
  • 25 Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
  • 26 Tu H.-Y, Wang F, Huo L.-P, Li Y, Zhu S, Zhao X, Li H, Qing F.-L, Chu L. J. Am. Chem. Soc. 2020; 142: 9604
  • 27 Wei X, Shu W, García-Domínguez A, Merino E, Nevado C. J. Am. Chem. Soc. 2020; 142: 13515