Yoshikai, N. : 2023 Science of Synthesis, 2022/5: Base-Metal Catalysis 1 DOI: 10.1055/sos-SD-238-00150
Base-Metal Catalysis 1

1.8 Copper-Catalyzed Aerobic Oxidation of Alcohols

More Information

Book

Editor: Yoshikai, N.

Authors: Chatani, N. ; Chemler, S. R. ; Chen, P. ; Dai, H.-X. ; Delcaillau, T.; Fujihara, T. ; Huang, J. ; Iwabuchi, Y. ; Kennedy-Ellis, J. J. ; Ko, C.; Koh, M. J. ; Lee, B. C.; Li, Y.; Lin, L.; Liu, G. ; Ma, D. ; Morandi, B. ; Nakao, Y. ; Ouyang, Y. ; Pang, X.; Qing, F.-L. ; Ren, Y. ; Sasano, Y. ; Shang, Y. ; Shou, J.-Y.; Shu, X.-Z. ; Su, W. ; Tobisu, M. ; Wang, C. ; Xiong, T. ; Xu, H.; Yang, F.; Yoshida, T.; Zhu, S.

Title: Base-Metal Catalysis 1

Print ISBN: 9783132453807; Online ISBN: 9783132453821; Book DOI: 10.1055/b000000441

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The oxidation of alcohols to carbonyl compounds is one of the most important reactions in organic synthesis. Owing to current environmental concerns, catalytic alcohol oxidation using molecular oxygen as the terminal oxidant has been actively investigated. Copper is frequently used as an aerobic oxidation catalyst in organic syntheses, as well as in biological systems. Co-catalysts acting in coordination with copper to promote the aerobic oxidation of alcohols have been extensively investigated, and in this context the use of nitroxyl radicals has been identified as a promising strategy. Through the efforts of many researchers, nitroxyl radical/copper catalyst systems that efficiently oxidize traditionally more challenging aliphatic alcohols under mild conditions have recently been discovered. Methods for the synthesis of esters, imines, nitriles, amides, and imides by nitroxyl radical/copper-catalyzed aerobic alcohol oxidation in the presence of other alcohols, amines, and amides have also been developed. Nitroxyl radical/copper-catalyzed aerobic alcohol oxidation exhibits outstanding chemoselectivity, and efficiently converts alcohols bearing oxidation-prone functional groups that cannot be efficiently oxidized using conventional methods.

 
  • 1 Arends IWCE, Sheldon RA, Modern Oxidation Methods. Bäckvall J.-E. Wiley-VCH; Weinheim, Germany 2010
  • 2 Tojo G, Fernández M. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice. Springer; New York 2006
  • 3 Corey EJ, Suggs JW. Tetrahedron Lett. 1975; 2647
  • 4 Huang SL, Swern D. J. Org. Chem. 1978; 43: 4537
  • 5 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
  • 7 Parmeggiani C, Matassini C, Cardona F. Green Chem. 2017; 19: 2030
  • 8 Chen B, Wang L, Gao S. ACS Catal. 2015; 5: 5851
  • 9 Parmeggiani C, Cardona F. Green Chem. 2012; 14: 547
  • 10 Matsumoto T, Ueno M, Wang N, Kobayashi S. Chem.–Asian J. 2008; 3: 196
  • 11 Zhan B.-Z, Thompson A. Tetrahedron 2004; 60: 2917
  • 12 Fernandes RA, Jha AK, Kumar P. Catal. Sci. Technol. 2020; 10: 7448
  • 13 Jira R. Angew. Chem. Int. Ed. 2009; 48: 9034
  • 14 Liu J, Guðmundsson A, Bäckvall J.-E. Angew. Chem. Int. Ed. 2021; 60: 15686
  • 15 Kim HY, Oh K. Org. Biomol. Chem. 2021; 19: 3569
  • 16 Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234 Chem. Rev. 2014; 114: 899
  • 17 Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
  • 18 Fontecave M, Pierre J.-L. Coord. Chem. Rev. 1998; 170: 125
  • 19 Parikka K, Master E, Tenkanen M. J. Mol. Catal. B: Enzym. 2015; 120: 47
  • 20 Whittaker JW. Chem. Rev. 2003; 103: 2347
  • 21 Trammell R, Rajabimoghadam K, Garcia-Bosch I. Chem. Rev. 2019; 119: 2954
  • 22 Das A, Ren YF, Hessin C, Desage-El Murr M. Beilstein J. Org. Chem. 2020; 16: 858
  • 23 Markó I. E, Giles PR, Tsukazaki M, Brown SM, Urch CJ. Science (Washington, D. C.) 1996; 274: 2044
  • 24 Wang Y, DuBois JL, Hedman B, Hodgson KO, Stack TDP. Science (Washington, D. C.) 1998; 279: 537
  • 25 Marais L, Swarts AJ. Catalysts 2019; 9: 395
  • 26 Seki Y, Oisaki K, Kanai M. Tetrahedron Lett. 2014; 55: 3738
  • 27 Ryland BL, Stahl SS. Angew. Chem. Int. Ed. 2014; 53: 8824
  • 28 Cao Q, Dornan LM, Rogan L, Hughes NL, Muldoon MJ. Chem. Commun. (Cambridge) 2014; 50: 4524
  • 29 Dornan LM, Hughes NL, Muldoon MJ. Science of Synthesis: Catalytic Oxidation in Organic Synthesis 2017; 1: 529
  • 30 Xuan J, Haelsig K. T, Sheremet M, Machicao PA, Maimone TJ. J. Am. Chem. Soc. 2021; 143: 2970
  • 31 Wong AR, Fastuca N. J, Mak VW, Kerkovius JK, Stevenson SM, Reisman SE. ACS Central Sci. 2021; 7: 1311
  • 32 Kurose T, Tsukano C, Nanjo T, Takemoto Y. Org. Lett. 2021; 23: 676
  • 33 Reich D, Trowbridge A, Gaunt MJ. Angew. Chem. Int. Ed. 2020; 59: 2256
  • 34 Huang H.-X, Mi F, Li C, He H, Wang F.-P, Liu X.-Y, Qin Y. Angew. Chem. Int. Ed. 2020; 59: 23609
  • 35 Wölfl B, Mata G, Fürstner A. Chem.–Eur. J. 2019; 25: 255
  • 36 Hiraoka S, Matsumoto T, Matsuzaka K, Sato T, Chida N. Angew. Chem. Int. Ed. 2019; 58: 4381
  • 37 Tong G, Liu Z, Li P. Chem 2018; 4: 2944
  • 38 Farney EP, Feng SS, Schäfers F, Reisman SE. J. Am. Chem. Soc. 2018; 140: 1267
  • 39 Cho H, Shin JE, Lee S, Jeon H, Park S, Kim S. Org. Lett. 2018; 20: 6121
  • 40 von Kiedrowski V, Quentin F, Hiersemann M. Org. Lett. 2017; 19: 4391
  • 41 Hashimoto S, Katoh S, Kato T, Urabe D, Inoue M. J. Am. Chem. Soc. 2017; 139: 16420
  • 42 Li X.-H, Zhu M, Wang Z.-X, Liu X.-Y, Song H, Zhang D, Wang F.-P, Qin Y. Angew. Chem. Int. Ed. 2016; 55: 15667
  • 43 Willwacher J, Heggen B, Wirtz C, Thiel W, Fürstner A. Chem.–Eur. J. 2015; 21: 10416
  • 44 Hoffmeister L, Persich P, Fürstner A. Chem.–Eur. J. 2014; 20: 4396
  • 45 Likhtenshtein GI. Nitroxides: Brief History, Fundamentals, and Recent Developments. Springer; Cham, Switzerland 2020
  • 46 Tebben L, Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034
  • 47 Vogler T, Studer A. Synthesis 2008; 1979
  • 48 Likhtenshtein GI, Yamauchi J, Nakatsuji S, Smirnov AI, Tamura R. Nitroxides: Applications in Chemistry, Biomedicine, and Materials Science. Wiley-VCH; Weinheim, Germany 2008
  • 49 Ciriminna R, Pagliaro M. Org. Process Res. Dev. 2010; 14: 245
  • 50 Sheldon RA, Arends IWCE. J. Mol. Catal. A: Chem. 2006; 251: 200
  • 51 Sheldon RA, Arends IWCE. Adv. Synth. Catal. 2004; 346: 1051
  • 52 Anelli P. L, Banfi S, Montanari F, Quici S. J. Org. Chem. 1989; 54: 2970
  • 53 Anelli PL, Biffi C, Montanari F, Quici S. J. Org. Chem. 1987; 52: 2559
  • 54 Goodman SN, Dai Q, Wang J, Clark Jr WM. Org. Process Res. Dev. 2011; 15: 123
  • 55 Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DHB. Chem. Rev. 2006; 106: 2943
  • 56 Dugger RW, Ragan JA, Ripin DHB. Org. Process Res. Dev. 2005; 9: 253
  • 57 De Mico A, Margarita R, Parlanti L, Vescovi A, Piancatelli G. J. Org. Chem. 1997; 62: 6974
  • 58 Shibuya M. Tetrahedron Lett. 2020; 61: 151515
  • 59 Iwabuchi Y. Chem. Pharm. Bull. 2013; 61: 1197
  • 60 Shibuya M, Tomizawa M, Suzuki I, Iwabuchi Y. J. Am. Chem. Soc. 2006; 128: 8412
  • 61 Shibuya M, Sasano Y, Tomizawa M, Hamada T, Kozawa M, Nagahama N, Iwabuchi Y. Synthesis 2011; 3418
  • 62 Shibuya M, Tomizawa M, Sasano Y, Iwabuchi Y. J. Org. Chem. 2009; 74: 4619
  • 63 Hayashi M, Sasano Y, Nagasawa S, Shibuya M, Iwabuchi Y. Chem. Pharm. Bull. 2011; 59: 1570
  • 64 Shibuya M, Osada Y, Sasano Y, Tomizawa M, Iwabuchi Y. J. Am. Chem. Soc. 2011; 133: 6497
  • 65 Brackman W, Gaasbeek CJ. Recl. Trav. Chim. Pays-Bas 1966; 85: 257
  • 66 Semmelhack MF, Schmid CR, Cortes DA, Chou CS. J. Am. Chem. Soc. 1984; 106: 3374
  • 67 Gamez P, Arends IWCE, Sheldon RA, Reedijk J. Adv. Synth. Catal. 2004; 346: 805
  • 68 Gamez P, Arends IWCE, Reedijk J, Sheldon RA. Chem. Commun. (Cambridge) 2003; 2414
  • 69 Kumpulainen ETT, Koskinen AMP. Chem.–Eur. J. 2009; 15: 10901
  • 70 Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
  • 71 Ryland BL, McCann SD, Brunold TC, Stahl SS. J. Am. Chem. Soc. 2014; 136: 12166
  • 72 Hoover JM, Ryland BL, Stahl SS. J. Am. Chem. Soc. 2013; 135: 2357
  • 73 Nutting JE, Mao K, Stahl SS. J. Am. Chem. Soc. 2021; 143: 10565
  • 74 Sasano Y, Kogure N, Nagasawa S, Kasabata K, Iwabuchi Y. Org. Lett. 2018; 20: 6104
  • 75 Sasano Y, Nagasawa S, Yamazaki M, Shibuya M, Park J, Iwabuchi Y. Angew. Chem. Int. Ed. 2014; 53: 3236
  • 76 Zhai D, Ma S. Org. Chem. Front. 2019; 6: 3101
  • 77 Hoover JM, Steves JE, Stahl SS. Nat. Protoc. 2012; 7: 1161
  • 78 Steves JE, Stahl SS. J. Am. Chem. Soc. 2013; 135: 15742
  • 79 Sasano Y, Yamaichi A, Sasaki R, Nagasawa S, Iwabuchi Y. Chem. Pharm. Bull. 2021; 69: 488
  • 80 Sasano Y, Kogure N, Nishiyama T, Nagasawa S, Iwabuchi Y. Chem.–Asian J. 2015; 10: 1004
  • 81 Könning D, Hiller W, Christmann M. Org. Lett. 2012; 14: 5258
  • 82 Xie X, Stahl SS. J. Am. Chem. Soc. 2015; 137: 3767
  • 83 Morino Y, Yatabe T, Suzuki K, Yamaguchi K. Green Chem. 2022; 24: 2017
  • 84 Tian H, Yu X, Li Q, Wang J, Xu Q. Adv. Synth. Catal. 2012; 354: 2671
  • 85 Yin W, Wang C, Huang Y. Org. Lett. 2013; 15: 1850
  • 86 Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
  • 87 Zultanski SL, Zhao J, Stahl SS. J. Am. Chem. Soc. 2016; 138: 6416
  • 88 Piszel PE, Vasilopoulos A, Stahl SS. Angew. Chem. Int. Ed. 2019; 58: 12211
  • 89 Kataoka K, Wachi K, Jin X, Suzuki K, Sasano Y, Iwabuchi Y, Hasegawa J, Mizuno N, Yamaguchi K. Chem. Sci. 2018; 9: 4756
  • 90 Geoghegan K, Evans P. J. Org. Chem. 2013; 78: 3410
  • 91 Lin H.-Y, Causey R, Garcia GE, Snider BB. J. Org. Chem. 2012; 77: 7143
  • 92 Waser M, Moher ED, Borders SSK, Hansen MM, Hoard DW, Laurila ME, LeTourneau ME, Miller RD, Phillips ML, Sullivan KA, Ward JA, Xie C, Bye CA, Leitner T, Herzog-Krimbacher B, Kordian M, Müllner M. Org. Process Res. Dev. 2011; 15: 1266
  • 93 Becker MH, Chua P, Downham R, Douglas CJ, Garg NK, Hiebert S, Jaroch S, Matsuoka RT, Middleton JA, Ng FW, Overman LE. J. Am. Chem. Soc. 2007; 129: 11987
  • 94 Kedrowski BL, Heathcock CH. Heterocycles 2002; 58: 601
  • 95 Smith III AB, Condon SM, McCauley JA, Leazer JL, Leahy JW, Maleczka Jr RE. J. Am. Chem. Soc. 1997; 119: 947
  • 96 Ochen A, Whitten R, Aylott HE, Ruffell K, Williams GD, Slater F, Roberts A, Evans P, Steves JE, Sanganee MJ. Organometallics 2019; 38: 176
  • 97 Steves JE, Preger Y, Martinelli JR, Welch CJ, Root TW, Hawkins JM, Stahl SS. Org. Process Res. Dev. 2015; 19: 1548
  • 98 Greene JF, Hoover JM, Mannel DS, Root TW, Stahl SS. Org. Process Res. Dev. 2013; 17: 1247
  • 99 Seki Y, Tanabe K, Sasaki D, Sohma Y, Oisaki K, Kanai M. Angew. Chem. Int. Ed. 2014; 53: 6501