Yoshikai, N. : 2023 Science of Synthesis, 2022/5: Base-Metal Catalysis 1 DOI: 10.1055/sos-SD-238-00106
Base-Metal Catalysis 1

1.6 Copper-Catalyzed Acidic C—H Functionalization

More Information

Book

Editor: Yoshikai, N.

Authors: Chatani, N. ; Chemler, S. R. ; Chen, P. ; Dai, H.-X. ; Delcaillau, T.; Fujihara, T. ; Huang, J. ; Iwabuchi, Y. ; Kennedy-Ellis, J. J. ; Ko, C.; Koh, M. J. ; Lee, B. C.; Li, Y.; Lin, L.; Liu, G. ; Ma, D. ; Morandi, B. ; Nakao, Y. ; Ouyang, Y. ; Pang, X.; Qing, F.-L. ; Ren, Y. ; Sasano, Y. ; Shang, Y. ; Shou, J.-Y.; Shu, X.-Z. ; Su, W. ; Tobisu, M. ; Wang, C. ; Xiong, T. ; Xu, H.; Yang, F.; Yoshida, T.; Zhu, S.

Title: Base-Metal Catalysis 1

Print ISBN: 9783132453807; Online ISBN: 9783132453821; Book DOI: 10.1055/b000000441

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Copper-catalyzed functionalization of acidic C—H bonds has emerged as a fruitful field due to the abundance and inexpensive nature of copper salts. In this chapter, we summarize the relevant advances in which copper promotes direct C—H functionalizations, including cross-dehydrogenative transformations, of activated organic substrates. The chapter is classified based on the types of activating group, including carbonyl, nitrile, nitro, as well as electron-deficient (hetero)aromatic groups.

 
  • 1 Smith AMR, Hii KK. Chem. Rev. 2011; 111: 1637
  • 2 Lee H.-E, Kim D, You A, Park MH, Kim M, Kim C. Catalysts 2020; 10: 861
  • 3 Li C.-J. Acc. Chem. Res. 2009; 42: 335
  • 4 Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
  • 5 Liu X.-L, Jiang L.-B, Luo M.-P, Ren Z, Wang S.-G. Org. Chem. Front. 2022; 9: 265
  • 6 Purser S, Moore P. R, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 7 Carruthers W, Coldham I. Modern Methods of Organic Synthesis: Formation of Carbon–Carbon Single Bonds. Cambridge University Press; Cambridge, UK 2004
  • 8 Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
  • 9 Liang S, Xu K, Zeng C.-C, Tian H.-Y, Sun B.-G. Adv. Synth. Catal. 2018; 360: 4266
  • 10 Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
  • 11 Peng J.-B, Wu F.-P, Wu X.-F. Chem. Rev. 2019; 119: 2090
  • 12 McCann SD, Stahl SS. Acc. Chem. Res. 2015; 48: 1756
  • 13 Trammell R, Rajabimoghadam K, Garcia-Bosch I. Chem. Rev. 2019; 119: 2954
  • 14 Wickham LM, Giri R. Acc. Chem. Res. 2021; 54: 3415
  • 15 Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
  • 16 Nishino M, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 6993
  • 17 Li Z, Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
  • 18 Afsina CMA, Aneeja T, Neetha M, Anilkumar G. Eur. J. Org. Chem. 2021; 1776
  • 19 Chen H, Liu L, Huang T, Chen J, Chen T. Adv. Synth. Catal. 2020; 362: 3332
  • 20 Gephart III RT, Warren TH. Organometallics 2012; 31: 7728
  • 21 Kim HY, Oh K. Org. Biomol. Chem. 2021; 19: 3569
  • 22 Li Z, Bohle DS, Li C.-J. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 8928
  • 23 Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
  • 24 Chu X.-Q, Ge D, Shen Z.-L, Loh T.-P. ACS Catal. 2018; 8: 258
  • 25 Zhu C, Zhu R, Zeng H, Chen F, Liu C, Wu W, Jiang H. Angew. Chem. Int. Ed. 2017; 56: 13324
  • 26 Bolotin DS, Bokach NA, Demakova MY, Kukushkin VY. Chem. Rev. 2017; 117: 13039
  • 27 Gnaim S, Vantourout JC, Serpier F, Echeverria P.-G, Baran PS. ACS Catal. 2021; 11: 883
  • 28 McEntee ME, Pinder AR. J. Chem. Soc. 1957; 4419
  • 29 Hussey CWT, Pinder AR. J. Chem. Soc. 1961; 3525
  • 30 Matsuda N, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 11827
  • 31 Zhu X, Chiba S. Chem. Soc. Rev. 2016; 45: 4504
  • 32 Bao X, Jiang W, Liang J, Huo C. Org. Chem. Front. 2020; 7: 2107
  • 33 Almasalma AA, Mejía E. Synthesis 2020; 52: 2613
  • 34 Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
  • 35 Stevens JM, MacMillan DWC. J. Am. Chem. Soc. 2013; 135: 11756
  • 36 Evans RW, Zbieg JR, Zhu S, Li W, MacMillan DWC. J. Am. Chem. Soc. 2013; 135: 16074
  • 37 Jie X, Shang Y, Zhang X, Su W. J. Am. Chem. Soc. 2016; 138: 5623
  • 38 Shang Y, Jie X, Jonnada K, Zafar SN, Su W. Nat. Commun. 2017; 8: 2273
  • 39 Wang Z, Chen G, Zhang X, Fan X. Org. Chem. Front. 2017; 4: 612
  • 40 Chen M, Dong G. J. Am. Chem. Soc. 2019; 141: 14889
  • 41 Li Z, Xiao Y, Liu Z.-Q. Chem. Commun. (Cambridge) 2015; 51: 9969
  • 42 Liu Z.-Q, Li Z. Chem. Commun. (Cambridge) 2016; 52: 14278
  • 43 Wu X, Riedel J, Dong VM. Angew. Chem. Int. Ed. 2017; 56: 11589
  • 44 Gildner PG, Gietter AAS, Cui D, Watson DA. J. Am. Chem. Soc. 2012; 134: 9942
  • 45 Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
  • 46 Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
  • 47 Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2009; 131: 17052
  • 48 Zhao H, Wang M, Su W, Hong M. Adv. Synth. Catal. 2010; 352: 1301
  • 49 Wei Y, Zhao H, Kan J, Su W, Hong M. J. Am. Chem. Soc. 2010; 132: 2522
  • 50 Xie W, Heo J, Kim D, Chang S. J. Am. Chem. Soc. 2020; 142: 7487
  • 51 Xu S, Wu G, Ye F, Wang X, Li H, Zhao X, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2015; 54: 4669
  • 52 Liu Q, Wu P, Yang Y, Zeng Z, Liu J, Yi H, Lei A. Angew. Chem. Int. Ed. 2012; 51: 4666