Yoshikai, N. : 2023 Science of Synthesis, 2022/5: Base-Metal Catalysis 1 DOI: 10.1055/sos-SD-238-00052
Base-Metal Catalysis 1

1.3 Copper-Catalyzed Alkene Difunctionalization

Weitere Informationen

Buch

Herausgeber: Yoshikai, N.

Autoren: Chatani, N. ; Chemler, S. R. ; Chen, P. ; Dai, H.-X. ; Delcaillau, T.; Fujihara, T. ; Huang, J. ; Iwabuchi, Y. ; Kennedy-Ellis, J. J. ; Ko, C.; Koh, M. J. ; Lee, B. C.; Li, Y.; Lin, L.; Liu, G. ; Ma, D. ; Morandi, B. ; Nakao, Y. ; Ouyang, Y. ; Pang, X.; Qing, F.-L. ; Ren, Y. ; Sasano, Y. ; Shang, Y. ; Shou, J.-Y.; Shu, X.-Z. ; Su, W. ; Tobisu, M. ; Wang, C. ; Xiong, T. ; Xu, H.; Yang, F.; Yoshida, T.; Zhu, S.

Titel: Base-Metal Catalysis 1

Print ISBN: 9783132453807; Online ISBN: 9783132453821; Buch-DOI: 10.1055/b000000441

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

Alkene difunctionalization is a classic molecular transformation in organic synthesis, enabling the production of more-complex molecules from simple hydrocarbon-derived feedstocks. Alkene difunctionalizations catalyzed by copper complexes offer potentially more-sustainable protocols compared to those catalyzed by more-precious or -toxic metals. This chapter summarizes important recent advancements in the field, especially in the area of asymmetric catalysis. A number of copper-catalyzed intramolecular and intermolecular alkene difunctionalizations for the synthesis of cyclic and acyclic chiral amines and ethers, and related compounds, are presented. The reactions include alkene and/or diene hydroamination, hydroetherification, carboamination, carboetherification, diamination, oxyamination, and dicarbofunctionalization. Many of the reaction mechanisms involve a radical component either in the first or second bond-forming event. The ability of copper to engage with radicals in bond-forming events, including enantioselective ones, is a valuable aspect of many of these reactions.

 
  • 1 Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
  • 2 Pellissier H. Tetrahedron 2010; 66: 1509
  • 3 Degennaro L, Trinchera P, Luisi R. Chem. Rev. 2014; 114: 7881
  • 4 Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
  • 5 Chemler SR, Karyakarte SD, Khoder ZM. J. Org. Chem. 2017; 82: 11311
  • 6 Liu RY, Buchwald SL. Acc. Chem. Res. 2020; 53: 1229
  • 7 Hirano K, Miura M. J. Am. Chem. Soc. 2022; 144: 648
  • 8 Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
  • 9 Fuller PH, Kim J.-W, Chemler SR. J. Am. Chem. Soc. 2008; 130: 17638
  • 10 Paderes MC, Keister JB, Chemler SR. J. Org. Chem. 2013; 78: 506
  • 11 Belding L, Chemler SR, Dudding T. J. Org. Chem. 2013; 78: 10288
  • 12 Wdowik T, Chemler SR. J. Am. Chem. Soc. 2017; 139: 9515
  • 13 Maji B, Yamamoto H. J. Am. Chem. Soc. 2015; 137: 15957
  • 14 Liwosz TW, Chemler SR. J. Am. Chem. Soc. 2012; 134: 2020
  • 15 Lin J.-S, Dong X.-Y, Li T.-T, Jiang N.-C, Tan B, Liu X.-Y. J. Am. Chem. Soc. 2016; 138: 9357
  • 16 Lin J.-S, Wang F.-L, Dong X.-Y, He W.-W, Yuan Y, Chen S, Liu X.-Y. Nat. Commun. 2017; 8: 14841
  • 17 Bai Z, Zhang H, Wang H, Yu H, Chen G, He G. J. Am. Chem. Soc. 2021; 143: 1195
  • 18 Um C, Chemler SR. Org. Lett. 2016; 18: 2515
  • 19 Turnpenny BW, Chemler SR. Chem. Sci. 2014; 5: 1786
  • 20 Wang F.-L, Dong X.-Y, Lin J.-S, Zeng Y, Jiao G.-Y, Gu Q.-S, Guo X.-Q, Ma C.-L, Liu X.-Y. Chem 2017; 3: 979
  • 21 Du H, Zhao B, Yuan W, Shi Y. Org. Lett. 2008; 10: 4231
  • 22 Wang H, Yang JC, Buchwald SL. J. Am. Chem. Soc. 2017; 139: 8428
  • 23 Dai X.-J, Engl O. D, León T, Buchwald SL. Angew. Chem. Int. Ed. 2019; 58: 3407
  • 24 Xie W.-B, Li Z. Synthesis 2020; 52: 2127
  • 25 Chen D, Berhane IA, Chemler SR. Org. Lett. 2020; 22: 7409
  • 26 Bovino MT, Liwosz TW, Kendel N. E, Miller Y, Tyminska N, Zurek E, Chemler SR. Angew. Chem. Int. Ed. 2014; 53: 6383
  • 27 Chen D, Chemler SR. Org. Lett. 2018; 20: 6453
  • 28 Berhane IA, Burde AS, Kennedy-Ellis JJ, Zurek E, Chemler SR. Chem. Commun. (Cambridge) 2021; 57: 10099
  • 29 Zhu R, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 12655
  • 30 Zhu R, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
  • 31 Shikora JM, Um C, Khoder ZM, Chemler SR. Chem. Sci. 2019; 10: 9265
  • 32 Cheng Y.-F, Dong X.-Y, Gu Q.-S, Yu Z.-L, Liu X.-Y. Angew. Chem. Int. Ed. 2017; 56: 8883
  • 33 Cheng Y.-F, Liu J.-R, Gu Q.-S, Yu Z.-L, Wang J, Li Z.-L, Bian J.-Q, Wen H.-T, Wang X.-J, Hong X, Liu X.-Y. Nat. Catal. 2020; 3: 401
  • 34 Chemler SR, Wdowik T. Science of Synthesis: Catalytic Oxidation in Organic Synthesis 2017; 1: 343
  • 35 Hemric BN, Shen K, Wang Q. J. Am. Chem. Soc. 2016; 138: 5813
  • 36 Hemric BN, Chen AW, Wang Q. J. Org. Chem. 2019; 84: 1468
  • 37 Li X.-T, Lv L, Wang T, Gu Q.-S, Xu G.-X, Li Z.-L, Ye L, Zhang X, Cheng G.-J, Liu X.-Y. Chem 2020; 6: 1692
  • 38 Zhu S, Niljianskul N, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
  • 39 Niu D, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 9716
  • 40 Guo S, Yang JC, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 15976
  • 41 Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
  • 42 Wang F, Wang D, Wan X, Wu L, Chen P, Liu G. J. Am. Chem. Soc. 2016; 138: 15547
  • 43 Zhang G, Zhou S, Fu L, Chen P, Li Y, Zou J, Liu G. Angew. Chem. Int. Ed. 2020; 59: 20439
  • 44 Wu L, Wang F, Chen P, Liu G. J. Am. Chem. Soc. 2019; 141: 1887
  • 45 Sha W, Deng L, Ni S, Mei H, Han J, Pan Y. ACS Catal. 2018; 8: 7489
  • 46 Fu L, Zhou S, Wan X, Chen P, Liu G. J. Am. Chem. Soc. 2018; 140: 10965
  • 47 Dong X.-Y, Cheng J.-T, Zhang Y.-F, Li Z.-L, Zhan T.-Y, Chen J.-J, Wang F.-L, Yang N.-Y, Ye L, Gu Q.-S, Liu X.-Y. J. Am. Chem. Soc. 2020; 142: 9501
  • 48 Wu L, Wang F, Wan X, Wang D, Chen P, Liu G. J. Am. Chem. Soc. 2017; 139: 2904
  • 49 Zhu X, Su M, Zhang Q, Li Y, Bao H. Org. Lett. 2020; 22: 620
  • 50 Lin J.-S, Li T.-T, Liu J.-R, Jiao G.-Y, Gu Q.-S, Cheng J.-T, Guo Y.-L, Hong X, Liu X.-Y. J. Am. Chem. Soc. 2019; 141: 1074
  • 51 Zhu N, Wang T, Ge L, Li Y, Zhang X, Bao H. Org. Lett. 2017; 19: 4718
  • 52 Kennedy-Ellis JJ, Boldt ED, Chemler SR. Org. Lett. 2020; 22: 8365
  • 53 Wang D, Wu L, Wang F, Wan X, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2017; 139: 6811
  • 54 Wu L, Zhang Z, Wu D, Wang F, Chen P, Lin Z, Liu G. Angew. Chem. Int. Ed. 2021; 60: 6997
  • 55 Chen J, Liang Y.-J, Wang P.-Z, Li G.-Q, Zhang B, Qian H, Huan X.-D, Guan W, Xiao W.-J, Chen J.-R. J. Am. Chem. Soc. 2021; 143: 13382
  • 56 Wang P.-Z, Wu X, Cheng Y, Jiang M, Xiao W.-J, Chen J.-R. Angew. Chem. Int. Ed. 2021; 60: 22956
  • 57 Zhu X, Wujun J, Huang M, Li D, Li Y, Zhang X, Bao H. Nat. Commun. 2021; 12: 6670
  • 58 Hemric BN, Wang Q. Beilstein J. Org. Chem. 2016; 12: 22
  • 59 Hemric BN, Chen AW, Wang Q. ACS Catal. 2019; 9: 10070