Bäckvall, J.-E. : 2023 Science of Synthesis, 2022/4: Dynamic Kinetic Resolution (DKR) and Dynamic Kinetic Asymmetric Transformations (DYKAT) DOI: 10.1055/sos-SD-237-00121
Dynamic Kinetic Resolution (DKR) and Dynamic Kinetic Asymmetric Transformations (DYKAT)

10 Applications of Metal-Catalyzed Dynamic Kinetic Resolutions and Dynamic Kinetic Asymmetric Transformations for the Synthesis of Complex Molecules

Weitere Informationen

Buch

Herausgeber: Bäckvall, J.-E.

Autoren: Adriaensen, K. ; Akai, S. ; Berreur, J. ; Bhat, V. ; Clayden, J. ; Collins, B. S. L. ; Córdova, A. ; De Vos, D. ; Deiana, L.; Faber, K. ; Fletcher, S. P. ; Goetzke, F. W. ; González-Granda, S. ; Gotor-Fernández, V. ; Hafeman, N. J. ; Jin, Z. ; Kanomata, K. ; Kroutil, W. ; Liu, Y.; Modicom, F.; Pàmies, O. ; Sardini, Jr., S. R.; Stoltz, B. M. ; Winkler, C. K. ; Wu, X. ; Xie, J.-H. ; Zhang, K.; Zhou, Q.-L.

Titel: Dynamic Kinetic Resolution (DKR) and Dynamic Kinetic Asymmetric Transformations (DYKAT)

Print ISBN: 9783132453777; Online ISBN: 9783132453791; Buch-DOI: 10.1055/b000000439

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

The stereocontrolled synthesis of complex molecules is a key technology for the pharmaceutical, agrochemical, and fine-chemical industries, a well-established field of organic chemistry, and the ultimate proving ground for the value of newly developed synthetic methods. This chapter illustrates how metal-catalyzed dynamic kinetic resolutions (DKR) and dynamic kinetic asymmetric transformations (DYKAT) have been used in the synthesis of complex molecules such as natural products, pharmaceuticals, and chiral ligands. This approach has unique strategic advantages over other methods as it allows the use of racemic starting materials, where asymmetry is introduced at a later stage in a synthetic sequence and can even be used to set multiple stereogenic centers in a single step.

 
  • 1 Steinreiber J, Faber K, Griengl H. Chem.–Eur. J. 2008; 14: 8060
  • 2 Mohr JT, Krout MR, Stoltz BM. Nature (London) 2008; 455: 323
  • 3 Noyori R, Ohkuma T, Kitamura M, Takaya H, Sayo N, Kumobayashi H, Akutagawa S. J. Am. Chem. Soc. 1987; 109: 5856
  • 4 Noyori R, Ikeda T, Ohkuma T, Widhalm M, Kitamura M, Takaya H, Akutagawa S, Sayo N, Saito T, Taketomi T, Kumobayashi H. J. Am. Chem. Soc. 1989; 111: 9134
  • 5 Schmidt U, Leitenberger V, Griesser H, Schmidt J, Meyer R. Synthesis 1992; 1248
  • 6 Pu L.-Y, Chen J.-Q, Li M.-L, Li Y, Xie J.-H, Zhou Q.-L. Adv. Synth. Catal. 2016; 358: 1229
  • 7 Wang F, Tan X, Wu T, Zheng L.-S, Chen G.-Q, Zhang X. Chem. Commun. (Cambridge) 2020; 56: 15557
  • 8 Ojima I, Lin S, Chakravarty S, Fenoglio I, Park YH, Sun C.-M, Appendino G, Pera P, Veith JM, Bernacki RJ. J. Org. Chem. 1998; 63: 1637
  • 9 Ojima I, Fumero-Oderda CL, Kuduk SD, Ma Z, Kirikae F, Kirikae T. Bioorg. Med. Chem. 2003; 11: 2867
  • 10 Davies SG, Hughes DG, Nicholson RL, Smith AD, Wright AJ. Org. Biomol. Chem. 2004; 2: 1549
  • 11 Verzijl GKM, Schuster C, Dax T, de Vries AHM, Lefort L. Org. Process Res. Dev. 2018; 22: 1817
  • 12 Patil YS, Bonde NL, Kekan AS, Sathe DG, Das A. Org. Process Res. Dev. 2014; 18: 1714
  • 13 Steward KM, Corbett MT, Goodman CG, Johnson JS. J. Am. Chem. Soc. 2012; 134: 20197 J. Am. Chem. Soc. 2015; 137: 3991
  • 14 Steward KM, Gentry EC, Johnson JS. J. Am. Chem. Soc. 2012; 134: 7329 J. Am. Chem. Soc. 2015; 137: 3715
  • 15 Krabbe SW, Johnson JS. Org. Lett. 2015; 17: 1188
  • 16 Keßberg A, Lübken T, Metz P. Org. Lett. 2018; 20: 3006
  • 17 Rainka MP, Milne JE, Buchwald SL. Angew. Chem. Int. Ed. 2005; 44: 6177
  • 18 Liu C, Xie J.-H, Li Y.-L, Chen J.-Q, Zhou Q.-L. Angew. Chem. Int. Ed. 2013; 52: 593
  • 19 Kotera K. Tetrahedron 1961; 12: 248
  • 20 Fang L, Lyu Q, Lu C, Li H, Liu S, Han L. Adv. Synth. Catal. 2016; 358: 3196
  • 21 Milhau L, Guiry PJ. Top. Organomet. Chem. 2012; 38: 95
  • 22 Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
  • 23 Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4373
  • 24 Mohammadkhani L, Heravi MM. Chem. Rec. 2021; 21: 29
  • 25 Mata G, Kalnmals CA. Isr. J. Chem. 2021; 61: 427
  • 26 Goetzke FW, Fletcher SP. Synlett 2021; 32: 1816
  • 27 Nicolaou KC, Heretsch P, ElMarrouni A, Hale CRH, Pulukuri KK, Kudva AK, Narayan V, Prabhu KS. Angew. Chem. Int. Ed. 2014; 53: 10443
  • 28 Trost BM, Patterson DE, Hembre EJ. Chem.–Eur. J. 2001; 7: 3768
  • 29 Trost BM, Bunt RC, Lemoine RC, Calkins TL. J. Am. Chem. Soc. 2000; 122: 5968
  • 30 Trost BM, Horne DB, Woltering MJ. Angew. Chem. Int. Ed. 2003; 42: 5987
  • 31 Trost BM, Horne DB, Woltering MJ. Chem.–Eur. J. 2006; 12: 6607
  • 32 Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
  • 33 Fulton TJ, Chen AY, Bartberger MD, Stoltz BM. Chem. Sci. 2020; 11: 10802
  • 34 Gartshore CJ, Lupton DW. Angew. Chem. Int. Ed. 2013; 52: 4113
  • 35 Jing P, Yang Z, Zhao C, Zheng H, Fang B, Xie X, She X. Chem.–Eur. J. 2012; 18: 6729
  • 36 Sidera M, Fletcher SP. Nat. Chem. 2015; 7: 935
  • 37 Goetzke FW, van Dijk L, Fletcher SP, The Chemistry of Organoboron Compounds. Gandelman M, Marek I. Wiley; Chichester, U. K. 2019
  • 38 van Dijk L, Ardkhean R, Sidera M, Karabiyikoglu S, Sari Ö, Claridge TDW, Lloyd-Jones GC, Paton RS, Fletcher SP. Nat. Catal. 2021; 4: 284
  • 39 Kang C.-Q, Cheng Y.-Q, Guo H.-Q, Qiu X.-P, Gao L.-X. Tetrahedron: Asymmetry 2005; 16: 2141
  • 40 Schäfer P, Palacin T, Sidera M, Fletcher SP. Nat. Commun. 2017; 8: 15762
  • 41 Flick AC, Leverett CA, Ding HX, McInturff E, Fink SJ, Helal CJ, OʼDonnell CJ. J. Med. Chem. 2019; 62: 7340
  • 42 Chung CK, Bulger PG, Kosjek B, Belyk KM, Rivera N, Scott ME, Humphrey GR, Limanto J, Bachert DC, Emerson KM. Org. Process Res. Dev. 2014; 18: 215
  • 43 González J, van Dijk L, Goetzke FW, Fletcher SP. Nat. Protoc. 2019; 14: 2972
  • 44 Matsumura Y, Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. Wiley; Chichester, U. K. 2009
  • 45 Kučera R, Goetzke FW, Fletcher SP. Org. Lett. 2020; 22: 2991
  • 46 Goetzke FW, Mortimore M, Fletcher SP. Angew. Chem. Int. Ed. 2019; 58: 12128
  • 47 You H, Rideau E, Sidera M, Fletcher SP. Nature (London) 2015; 517: 351
  • 48 Rideau E, You H, Sidera M, Claridge TDW, Fletcher SP. J. Am. Chem. Soc. 2017; 139: 5614
  • 49 Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
  • 50 Rössler SL, Petrone DA, Carreira EM. Acc. Chem. Res. 2019; 52: 2657
  • 51 Rössler SL, Krautwald S, Carreira EM. J. Am. Chem. Soc. 2017; 139: 3603
  • 52 Hamilton JY, Sarlah D, Carreira EM. J. Am. Chem. Soc. 2013; 135: 994
  • 53 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science (Washington, D. C.) 2013; 340: 1065
  • 54 Krautwald S, Schafroth MA, Sarlah D, Carreira EM. J. Am. Chem. Soc. 2014; 136: 3020
  • 55 Schafroth MA, Zuccarello G, Krautwald S, Sarlah D, Carreira EM. Angew. Chem. Int. Ed. 2014; 53: 13898
  • 56 Alcock NW, Brown JM, Hulmes DI. Tetrahedron: Asymmetry 1993; 4: 743
  • 57 Bhat V, Wang S, Stoltz BM, Virgil SC. J. Am. Chem. Soc. 2013; 135: 16829
  • 58 Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem. Soc. Rev. 2021; 50: 2968
  • 59 Ramírez-López P, Ros A, Estepa B, Fernández R, Fiser B, Gómez-Bengoa E, Lassaletta JM. ACS Catal. 2016; 6: 3955
  • 60 Ito M, Kitahara S, Ikariya T. J. Am. Chem. Soc. 2005; 127: 6172
  • 61 Dong X.-Y, Zhang Y.-F, Ma C.-L, Gu Q.-S, Wang F.-L, Li Z.-L, Jiang S.-P, Liu X.-Y. Nat. Chem. 2019; 11: 1158
  • 62 Bianco GG, Ferraz HMC, Costas AM, Costa-Lotufo LV, Pessoa C, de Moraes MO, Schrems MG, Pfaltz A, Silva Jr LF. J. Org. Chem. 2009; 74: 2561
  • 63 Choi J, Fu GC. Science (Washington, D. C.) 2017; 356: eaaf7230
  • 64 Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 4896
  • 65 Wang Z, Yang Z.-P, Fu GC. Nat. Chem. 2021; 13: 236
  • 66 Hosokawa S, Kobayashi S. J. Synth. Org. Chem., Jpn. 2001; 59: 1103
  • 67 DeLano TJ, Dibrell SE, Lacker CR, Pancoast AR, Poremba KE, Cleary L, Sigman MS, Reisman SE. Chem. Sci. 2021; 12: 7758
  • 68 Li H, Belyk KM, Yin J, Chen Q, Hyde A, Ji Y, Oliver S, Tudge MT, Campeau L.-C, Campos KR. J. Am. Chem. Soc. 2015; 137: 13728