Ackermann, L. : 2022 Science of Synthesis, 2021/5: Electrochemistry in Organic Synthesis DOI: 10.1055/sos-SD-236-00280
Electrochemistry in Organic Synthesis

14 Electrochemistry in Natural Product Synthesis

More Information

Book

Editor: Ackermann, L.

Authors: Ackermann, L. ; Brown, R. C. D. ; Enders, P.; Fang, P.; Folgueiras-Amador, A. A. ; Francke, R. ; Galczynski, J.; Gosmini, C. ; Hodgson, J. W.; Hou, Z.-W.; Huang, H.; Huang, Z.; Inagi, S. ; Kuciński, K. ; Kuriyama, M. ; Lam, K. ; Lambert, T. H.; Leech, M. C. ; Lennox, A. J. J. ; Lin, Z.; Little, R. D.; Massignan, L.; Mei, T.-S.; Meyer, T. H.; Moeller, K. D. ; Onomura, O. ; Prudlik, A.; Ruan, Z. ; Scheremetjew, A. ; Schiltz, P.; Selt, M.; Villani, E. ; Waldvogel, S. R. ; Wang, Z.-H.; Wu, T.; Xing, Y.-K.; Xu, H.-C. ; Yamamoto, K.

Title: Electrochemistry in Organic Synthesis

Print ISBN: 9783132442122; Online ISBN: 9783132442146; Book DOI: 10.1055/b000000126

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The multistep synthesis of natural products has historically served as a useful and informative platform for showcasing the best, state-of-the-art synthetic methodologies and technologies. Over the last several decades, electrochemistry has proved itself to be a useful tool for conducting redox reactions. This is primarily due to its unique ability to selectively apply any oxidizing or reducing potential to a sufficiently conductive reaction solution. Electrochemical redox reactions are readily scaled and can be more sustainable than competing strategies based on conventional redox reagents. In this chapter, we summarize the examples where electrochemistry has been used in the synthesis of natural products. The chapter is organized by the reaction type of the electrochemical step and covers both oxidative and reductive reaction modes.

 
  • 1 Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
  • 2 Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
  • 3 Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
  • 4 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 5 Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
  • 6 Heard DM, Lennox AJJ. Angew. Chem. Int. Ed. 2020; 59: 18866
  • 7 Leech MC, Lam K. Acc. Chem. Res. 2020; 53: 121
  • 8 Hayrapetyan D, Shkepu V, Seilkhanov OT, Zhanabil Z, Lam K. Chem. Commun. (Cambridge) 2017; 53: 8451
  • 9 Zhang S, Li L, Wang H, Li Q, Liu W, Xu K, Zeng C. Org. Lett. 2018; 20: 252
  • 10 Schäfer HJ. Top. Curr. Chem. 1990; 152: 91
  • 11 Corey EJ, Sauers RR. J. Am. Chem. Soc. 1959; 81: 1739
  • 12 Shono T, Hamaguchi H, Matsumura Y. J. Am. Chem. Soc. 1975; 97: 4264
  • 13 Jones AM, Banks CE. Beilstein J. Org. Chem. 2014; 10: 3056
  • 14 Shankaraiah N, da Silva WA, Andrade CKZ, Silva Santos L. Tetrahedron Lett. 2008; 49: 4289
  • 15 Mirabal-Gallardo Y, Piérola J, Shankaraiah N, Silva Santos L. Tetrahedron Lett. 2012; 53: 3672
  • 16 Kam T.-S, Lim T.-M, Tan G.-H. J. Chem. Soc., Perkin Trans. 1 2001; 1594
  • 17 Shankaraiah N, Pilli RA, Silva Santos L. Tetrahedron Lett. 2008; 49: 5098
  • 18 Takahashi S, Kakinuma N, Iwai H, Yanagisawa T, Nagai K, Suzuki K, Tokunaga T, Nakagawa A. J. Antibiot. 2000; 53: 1252
  • 19 Yoshida J.-i, Suga S. Chem.–Eur. J. 2002; 8: 2650
  • 20 Ruetsch Y, Boni T, Borgeat A. Curr. Top. Med. Chem. 2005; 1: 175
  • 21 Subramaniam G, Kam T.-S. Helv. Chim. Acta 2008; 91: 930
  • 22 Quirion JC, Husson HP. Nat. Prod. Lett. 1993; 3: 291
  • 23 Masui M, Hara S, Ueshima T, Kawaguchi T, Ozaki S. Chem. Pharm. Bull. 1983; 31: 4209
  • 24 Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS. Nature (London) 2016; 533: 77
  • 25 Dixon DD, Lockner JW, Zhou Q, Baran PS. J. Am. Chem. Soc. 2012; 134: 8432
  • 26 Kawamata Y, Yan M, Liu Z, Bao D.-H, Chen J, Starr JT, Baran PS. J. Am. Chem. Soc. 2017; 139: 7448
  • 27 Tokuda M, Fujita H, Miyamoto T, Suginome H. Tetrahedron 1993; 49: 2413
  • 28 Sobin BA, Tanner FW. J. Am. Chem. Soc. 1954; 76: 4053
  • 29 Oida S, Ohki E. Chem. Pharm. Bull. 1969; 17: 1405
  • 30 Takahata H, Banba Y, Tajima M, Momose T. J. Org. Chem. 1991; 56: 240
  • 31 Shono T, Kise N. Chem. Lett. 1987; 697
  • 32 Felner I, Schenker K. Helv. Chim. Acta 1970; 53: 754
  • 33 Wong CM, Buccini J, Chang I, Te Raa J, Schwenk R. Can. J. Chem. 1969; 47: 2421
  • 34 Blackman AJ, Hambley TW, Picker K, Taylor WC, Thirasasana N. Tetrahedron Lett. 1987; 28: 5561
  • 35 Higuchi K, Sato Y, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T. Org. Lett. 2009; 11: 197
  • 36 Hou Z.-W, Yan H, Song J.-S, Xu H.-C. Chin. J. Chem. 2018; 36: 909
  • 37 Liu B, Duan S, Sutterer AC, Moeller KD. J. Am. Chem. Soc. 2002; 124: 10101
  • 38 Mihelcic J, Moeller KD. J. Am. Chem. Soc. 2004; 126: 9106
  • 39 King TJ, Farrell IW, Halsall TG, Thaller V. J. Chem. Soc., Chem. Commun. 1977; 727
  • 40 Lansbury PT, Zhi B.-x. Tetrahedron Lett. 1988; 29: 5735
  • 41 Röder E, Wiedenfeld H, Frisse M. Phytochemistry 1980; 19: 1275
  • 42 Donohoe TJ, Guillermin JB, Frampton C, Walter DS. Chem. Commun. (Cambridge) 2000; 465
  • 43 Wu H, Moeller KD. Org. Lett. 2007; 9: 4599
  • 44 Brady SF, Singh MP, Janso JE, Clardy J. J. Am. Chem. Soc. 2000; 122: 2116
  • 45 Maifeld SV, Lee D. Synlett 2006; 1623
  • 46 Valdivia C, Kettering M, Anke H, Thines E, Sterner O. Tetrahedron 2005; 61: 9527
  • 47 Miller AK, Hughes CC, Kennedy-Smith JJ, Gradl SN, Trauner D. J. Am. Chem. Soc. 2006; 128: 17057
  • 48 Black DStC, Keller PA, Kumar N. Tetrahedron Lett. 1989; 30: 5807
  • 49 Boger DL, Wolkenberg SE. J. Org. Chem. 2000; 65: 9120
  • 50 Ganton MD, Kerr MA. Org. Lett. 2005; 7: 4777
  • 51 Okamoto K, Chiba K. Org. Lett. 2020; 22: 3613
  • 52 Yamamura S, Shizuri Y, Shigemori H, Okuno Y, Ohkubo M. Tetrahedron 1991; 47: 635
  • 53 Takakura H, Yamamura S. Tetrahedron Lett. 1999; 40: 299
  • 54 Doi F, Ogamino T, Sugai T, Nishiyama S. Tetrahedron Lett. 2003; 44: 4877
  • 55 Ogamino T, Ohnishi S, Ishikawa Y, Sugai T, Obata R, Nishiyama S. Sci. Technol. Adv. Mater. 2006; 7: 175
  • 56 Lipp A, Selt M, Ferenc D, Schollmeyer D, Waldvogel SR, Opatz T. Org. Lett. 2019; 21: 1828
  • 57 Lipp A, Ferenc D, Gütz C, Geffe M, Vierengel N, Schollmeyer D, Schäfer HJ, Waldvogel SR, Opatz T. Angew. Chem. Int. Ed. 2018; 57: 11055
  • 58 Lips S, Waldvogel SR. ChemElectroChem 2019; 6: 1649
  • 59 Ogamino T, Ishikawa Y, Nishiyama S. Heterocycles 2003; 61: 73
  • 60 Ogamino T, Obata R, Nishiyama S. Tetrahedron Lett. 2006; 47: 727
  • 61 Rosen BR, Werner EW, OʼBrien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
  • 62 Romero KJ, Galliher MS, Raycroft MAR, Chauvin JPR, Bosque I, Pratt DA, Stephenson CRJ. Angew. Chem. Int. Ed. 2018; 57: 17125
  • 63 Romero KJ, Keylor MH, Griesser M, Zhu X, Strobel EJ, Pratt DA, Stephenson CRJ. J. Am. Chem. Soc. 2020; 142: 6499
  • 64 Naito Y, Tanabe T, Kawabata Y, Ishikawa Y, Nishiyama S. Tetrahedron Lett. 2010; 51: 4776
  • 65 Park YS, Little RD. J. Org. Chem. 2008; 73: 6807
  • 66 Chiba K, Arakawa T, Tada M. J. Chem. Soc., Perkin Trans. 1 1998; 2939
  • 67 Elsherbini M, Wirth T. Chem.–Eur. J. 2018; 24: 13399
  • 68 Inoue K, Ishikawa Y, Nishiyama S. Org. Lett. 2010; 12: 436
  • 69 Moore JC, Davies ES, Walsh DA, Sharma P, Moses JE. Chem. Commun. (Cambridge) 2014; 50: 12523
  • 70 Nakamura H, Yasui K, Kanda Y, Baran PS. J. Am. Chem. Soc. 2019; 141: 1494
  • 71 Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, deGruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc. 2019; 141: 6392
  • 72 Nugent ST, Baizer MM, Little RD. Tetrahedron Lett. 1982; 23: 1339
  • 73 Fox DP, Little RD, Baizer MM. J. Org. Chem. 1985; 50: 2202
  • 74 Amputch MA, Little RD. Tetrahedron 1991; 47: 383
  • 75 Harmata M, Bohnert GJ. Org. Lett. 2003; 5: 59
  • 76 Ayer WA, Saeedi-Ghomi MH. Can. J. Chem. 1981; 59: 2536
  • 77 Murata Y, Ohtsuka T, Shirahama H, Matsumoto T. Tetrahedron Lett. 1981; 22: 4313
  • 78 Moens L, Baizer MM, Little RD. J. Org. Chem. 1986; 51: 4497
  • 79 Sowell CG, Wolin RL, Little RD. Tetrahedron Lett. 1990; 31: 485
  • 80 Kende AS, Roth B, Sanfilippo PJ, Blacklock TJ. J. Am. Chem. Soc. 1982; 104: 5808
  • 81 Shono T, Kise N, Fujimoto T, Tominaga N, Morita H. J. Org. Chem. 1992; 57: 7175
  • 82 Kise N, Sakurai T. Tetrahedron Lett. 2010; 51: 70
  • 83 Kise N, Isemoto S, Sakurai T. Org. Lett. 2009; 11: 4902
  • 84 Kise N, Isemoto S, Sakurai T. J. Org. Chem. 2011; 76: 9856
  • 85 Shono T, Yoshida K, Ando K, Usui Y, Hamaguchi H. Tetrahedron Lett. 1978; 4819
  • 86 Shono T, Usui Y, Hamaguchi H. Tetrahedron Lett. 1980; 21: 1351
  • 87 Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
  • 88 Auer L, Weymuth C, Scheffold R. Helv. Chim. Acta 1993; 76: 810