Ackermann, L. : 2022 Science of Synthesis, 2021/5: Electrochemistry in Organic Synthesis DOI: 10.1055/sos-SD-236-00258
Electrochemistry in Organic Synthesis

13 Electrochemistry in Laboratory Flow Systems

More Information

Book

Editor: Ackermann, L.

Authors: Ackermann, L. ; Brown, R. C. D. ; Enders, P.; Fang, P.; Folgueiras-Amador, A. A. ; Francke, R. ; Galczynski, J.; Gosmini, C. ; Hodgson, J. W.; Hou, Z.-W.; Huang, H.; Huang, Z.; Inagi, S. ; Kuciński, K. ; Kuriyama, M. ; Lam, K. ; Lambert, T. H.; Leech, M. C. ; Lennox, A. J. J. ; Lin, Z.; Little, R. D.; Massignan, L.; Mei, T.-S.; Meyer, T. H.; Moeller, K. D. ; Onomura, O. ; Prudlik, A.; Ruan, Z. ; Scheremetjew, A. ; Schiltz, P.; Selt, M.; Villani, E. ; Waldvogel, S. R. ; Wang, Z.-H.; Wu, T.; Xing, Y.-K.; Xu, H.-C. ; Yamamoto, K.

Title: Electrochemistry in Organic Synthesis

Print ISBN: 9783132442122; Online ISBN: 9783132442146; Book DOI: 10.1055/b000000126

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Organic electrosynthesis in flow reactors is an area of increasing interest, with efficient mass transport and high electrode area to reactor volume present in many flow electrolysis cell designs facilitating higher rates of production with high selectivity. The controlled reaction environment available in flow cells also offers opportunities to develop new electrochemical processes. In this chapter, various types of electrochemical flow cells are reviewed in the context of laboratory synthesis, paying particular attention to how the different reactor environments impact upon the electrochemical processes, and the factors responsible for good cell performance. Coverage includes well-established plane-parallel-plate designs, reactors with small interelectrode gaps, extended-channel electrolysis cells, and highly sophisticated designs with rapidly rotating electrodes to enhance mass transport. In each case, illustrative electrosyntheses are presented.

 
  • 1 Schotten C, Nicholls TP, Bourne RA, Kapur N, Nguyen BN, Willans CE. Green Chem. 2020; 22: 3358
  • 2 Hilt G. ChemElectroChem 2020; 7: 395
  • 3 Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
  • 4 Grimshaw J. Electrochemical Reactions and Mechanisms in Organic Chemistry. Elsevier:; Amsterdam 2000
  • 5 Organic Electrochemistry. Hammerich O, Speiser B. CRC Press; Boca Raton, FL 2016
  • 6 Fundamentals and Applications of Organic Electrochemistry. Fuchigami T, Inagi S, Atobe M. Wiley; Chichester, UK 2014
  • 7 Pletcher D. Electrochem. Commun. 2018; 88: 1
  • 8 Shono T, Hamaguchi H, Matsumura Y. J. Am. Chem. Soc. 1975; 97: 4264
  • 9 Mitzlaff M, Warning K, Jensen H. Justus Liebigs Ann. Chem. 1978; 1713
  • 10 Nyberg K, Servin R. Acta Chem. Scand., Ser. B 1976; 30: 640
  • 11 Houghton RW, Kuhn AT. J. Appl. Electrochem. 1974; 4: 173
  • 12 Walsh FC, Ponce de León C. Electrochim. Acta 2018; 280: 121
  • 13 Delahay P, Tobias CW, Lemmermann WG. Advances in Electrochemistry and Electrochemical Engineering. Wiley; New York 1962
  • 14 Perry SC, Ponce de León C, Walsh FC. J. Electrochem. Soc. 2020; 167: 155525
  • 15 Atobe M. Curr. Opin. Electrochem. 2017; 2: 1
  • 16 Watts K, Baker A, Wirth T. J. Flow Chem. 2014; 4: 2
  • 17 Pletcher D, Green RA, Brown RCD. Chem. Rev. 2018; 118: 4573
  • 18 Pletcher D. Curr. Opin. Electrochem. 2020; 24: 1
  • 19 Jüttner K, In: Encyclopedia of Electrochemistry Bard AJ, Stratmann M. Wiley-VCH Weinheim, Germany 2007; 5. 1
  • 20 Atobe M, Tateno H, Matsumura Y. Chem. Rev. 2018; 118: 4541
  • 21 Noël T, Cao Y, Laudadio G. Acc. Chem. Res. 2019; 52: 2858
  • 22 Walsh FC, Arenas LF, Ponce de León C. Curr. Opin. Electrochem. 2019; 16: 10
  • 23 Paddon CA, Atobe M, Fuchigami T, He P, Watts P, Haswell SJ, Pritchard GJ, Bull SD, Marken F. J. Appl. Electrochem. 2006; 36: 617
  • 24 Suga S, Okajima M, Fujiwara K, Yoshida J.-i. J. Am. Chem. Soc. 2001; 123: 7941
  • 25 He P, Watts P, Marken F, Haswell SJ. Electrochem. Commun. 2005; 7: 918
  • 26 Horcajada R, Okajima M, Suga S, Yoshida J.-i. Chem. Commun. (Cambridge) 2005; 1303
  • 27 He P, Watts P, Marken F, Haswell SJ. Angew. Chem. Int. Ed. 2006; 45: 4146
  • 28 Ziogas A, Kolb G, OʼConnell M, Attour A, Lapicque F, Matlosz M, Rode S. J. Appl. Electrochem. 2009; 39: 2297
  • 29 Küpper M, Hessel V, Löwe H, Stark W, Kinkel J, Michel M, Schmidt-Traub H. Electrochim. Acta 2003; 48: 2889
  • 30 Shida N, Nakamura Y, Atobe M. Chem. Rec. 2021; 21: 2164
  • 31 Folgueiras-Amador AA, Wirth T. Science of Synthesis: Flow Chemistry in Organic Synthesis 2018; 147 10.1055/sos-SD-228-00106
  • 32 Arenas LF, Ponce de León C, Walsh FC. Curr. Opin. Electrochem. 2019; 16: 1
  • 33 Friedrich JM, Ponce de León C, Reade GW, Walsh FC. J. Electroanal. Chem. 2004; 561: 203
  • 34 Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D. J. Appl. Electrochem. 1993; 23: 38
  • 35 Folgueiras-Amador AA, Jolley KE, Birkin PR, Brown RCD, Pletcher D, Pickering S, Sharabi M, de Frutos O, Mateos C, Rincón JA. Electrochem. Commun. 2019; 100: 6
  • 36 Brown RCD. Chem. Rec. 2021; 21: 2472
  • 37 Rivera FF, Ponce de León C, Nava JL, Walsh FC. Electrochim. Acta 2015; 163: 338
  • 38 Arenas LF, Ponce de León C, Walsh FC. J. Electrochem. Soc. 2020; 167: 023504
  • 39 www.electrocell.com (accessed October 2021).
  • 40 www.ikaprocess.com/en/Products/Electro-Organic-Synthesis-Systems-cph-45/ElectraSyn-flow-csb-ES/ (accessed October 2021).
  • 41 C-Flow range of electrochemical cells; www.ctechinnovation.com/our-products/c-flow/ (accessed October 2021).
  • 42 Ambrosi A, Shi RRS, Webster RD. J. Mater. Chem. A 2020; 8: 21902
  • 43 Griffiths M, De León CP, Walsh FC. AIChE J. 2005; 51: 682
  • 44 Karthik PE, Alessandri I, Sengeni A. J. Electrochem. Soc. 2020; 167: 125503
  • 45 Heard DM, Lennox AJJ. Angew. Chem. Int. Ed. 2020; 59: 18866
  • 46 Walsh FC, Arenas LF, Ponce de León C. J. Electrochem. Soc. 2021; 168: 023503
  • 47 Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D. J. Appl. Electrochem. 1994; 24: 95
  • 48 Ralph TR, Hitchman ML, Millington JP, Walsh FC. Electrochim. Acta 1996; 41: 591
  • 49 Wu L, Arenas LF, Graves JE, Walsh FC. J. Electrochem. Soc. 2020; 167: 043505
  • 50 Folgueiras-Amador AA, Teuten AE, Pletcher D, Brown RCD. React. Chem. Eng. 2020; 5: 712
  • 51 Gütz C, Stenglein A, Waldvogel SR. Org. Process Res. Dev. 2017; 21: 771
  • 52 Gleede B, Selt M, Gütz C, Stenglein A, Waldvogel SR. Org. Process Res. Dev. 2020; 24: 1916
  • 53 Selt M, Gleede B, Franke R, Stenglein A, Waldvogel SR. J. Flow Chem. 2021; 11: 143
  • 54 Marken F, Cresswell AJ, Bull SD. Chem. Rec. 2021; 21: 2585
  • 55 Mo Y, Lu Z, Rughoobur G, Patil P, Gershenfeld N, Akinwande AI, Buchwald SL, Jensen KF. Science (Washington, D. C.) 2020; 368: 1352
  • 56 Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey TJ, Anderson SL, Neurock M, Minteer SD, Baran PS. Science (Washington, D. C.) 2019; 363: 838
  • 57 Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, deGruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc. 2019; 141: 6392
  • 58 Green RA, Brown RCD, Pletcher D, Harji B. Electrochem. Commun. 2016; 73: 63
  • 59 Attour A, Rode S, Ziogas A, Matlosz M, Lapicque F. J. Appl. Electrochem. 2008; 38: 339
  • 60 Green RA, Brown RCD, Pletcher D. J. Flow Chem. 2015; 5: 31
  • 61 Green RA, Brown RCD, Pletcher D. J. Flow Chem. 2016; 6: 191
  • 62 Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed., Wiley; New York 2001
  • 63 Walsh FC. A First Course in Electrochemical Engineering. The Electrochemical Consultancy; Romsey, UK 1993
  • 64 Kuleshova J, Hill-Cousins JT, Birkin PR, Brown RCD, Pletcher D, Underwood TJ. Electrochim. Acta 2011; 56: 4322
  • 65 Kuleshova J, Hill-Cousins JT, Birkin PR, Brown RCD, Pletcher D, Underwood TJ. Electrochim. Acta 2012; 69: 197
  • 66 Folgueiras-Amador AA, Wirth T, In: Flow Chemistry: Integrated Approaches for Practical Applications Luis SV, Garcia-Verdugo E. RSC Cambridge 2020; 153-198
  • 67 Ošeka M, Laudadio G, van Leest NP, Dyga M, Bartolomeu AdeA, Gooßen LJ, de Bruin B, de Oliveira KT, Noël T. Chem 2021; 7: 255
  • 68 Cao Y, Knijff J, Delparish A, dʼAngelo MFN, Noël T. ChemSusChem 2021; 14: 590
  • 69 Köckinger M, Hanselmann P, Roberge DM, Geotti-Bianchini P, Kappe CO, Cantillo D. Green Chem. 2021; 23: 2382
  • 70 Bian M, Hua J, Ma T, Xu J, Cai C, Yang Z, Liu C, He W, Fang Z, Guo K. Org. Biomol. Chem. 2021; 19: 3207
  • 71 Wang D, Wang P, Wang S, Chen YH, Zhang H, Lei A. Nat. Commun. 2019; 10: 2796
  • 72 Laudadio G, de Smet W, Struik L, Cao Y, Noël T. J. Flow Chem. 2018; 8: 157
  • 73 Amri N, Wirth T. Synthesis 2020; 52: 1751
  • 74 Amri N, Wirth T. Synlett 2020; 31: 1894
  • 75 Huang C, Qian X.-Y, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 6650
  • 76 Liu C, Lin Y, Cai C, Yuan C, Fang Z, Guo K. Green Chem. 2021; 23: 2956
  • 77 Delorme AE, Sans V, Licence P, Walsh DA. ACS Sustainable Chem. Eng. 2019; 7: 11691
  • 78 Amri N, Wirth T. J. Org. Chem. 2021; in press; 10.1021/acs.joc.1c00860
  • 79 Elsherbini M, Winterson B, Alharbi H, Folgueiras-Amador AA, Génot C, Wirth T. Angew. Chem. Int. Ed. 2019; 58: 9811
  • 80 Santi M, Seitz J, Cicala R, Hardwick T, Ahmed N, Wirth T. Chem.–Eur. J. 2019; 25: 16230
  • 81 Huang C, Li Z.-Y, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2021; 60: 11237
  • 82 Cao Y, Adriaenssens B, Bartolomeu AdeA, Laudadio G, de Oliveira KT, Noël T. J. Flow Chem. 2020; 10: 191
  • 83 Laudadio G, Bartolomeu AdeA, Verwijlen LMHM, Cao Y, de Oliveira KT, Noël T. J. Am. Chem. Soc. 2019; 141: 11832
  • 84 Laudadio G, Barmpoutsis E, Schotten C, Struik L, Govaerts S, Browne DL, Noël T. J. Am. Chem. Soc. 2019; 141: 5664
  • 85 Folgueiras-Amador AA, Qian X.-Y, Xu H.-C, Wirth T. Chem.–Eur. J. 2018; 24: 487
  • 86 Kong WJ, Finger LH, Messinis AM, Kuniyil R, Oliveira JCA, Ackermann L. J. Am. Chem. Soc. 2019; 141: 17198
  • 87 Cao Y, Noël T. Org. Process Res. Dev. 2019; 23: 403
  • 88 Allen BDW, Hareram MD, Seastram AC, McBride T, Wirth T, Browne DL, Morrill LC. Org. Lett. 2019; 21: 9241
  • 89 Tanaka K, Yoshizawa H, Atobe M. Synlett 2019; 30: 1194
  • 90 Amri N, Skilton RA, Guthrie D, Wirth T. Synlett 2019; 30: 1183
  • 91 Collin DE, Folgueiras-Amador AA, Pletcher D, Light ME, Linclau B, Brown RCD. Chem.–Eur. J. 2020; 26: 374
  • 92 Liu C.-K, Chen M.-Y, Lin X.-X, Fang Z, Guo K. Green Chem. 2020; 22: 6437
  • 93 www.syrris.com/product/asia-electrochemistry-flow-chemistry-system/ (accessed October 2021).
  • 94 Stalder R, Roth GP. ACS Med. Chem. Lett. 2013; 4: 1119
  • 95 Roth GP, Stalder R, Long TR, Sauer DR, Djuric SW. J. Flow Chem. 2013; 3: 34
  • 96 Green RA, Pletcher D, Leach SG, Brown RCD. Org. Lett. 2015; 17: 3290
  • 97 Green RA, Pletcher D, Leach SG, Brown RCD. Org. Lett. 2016; 18: 1198
  • 98 Laudadio G, Straathof NJW, Lanting MD, Knoops B, Hessel V, Noël T. Green Chem. 2017; 19: 4061
  • 99 Kabeshov MA, Musio B, Murray PRD, Browne DL, Ley SV. Org. Lett. 2014; 16: 4618
  • 100 Hill-Cousins JT, Kuleshova J, Green RA, Birkin PR, Pletcher D, Underwood TJ, Leach SG, Brown RCD. ChemSusChem 2012; 5: 326
  • 101 Semmelhack MF, Chou CS, Cortes DA. J. Am. Chem. Soc. 1983; 105: 4492
  • 102 Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
  • 103 www.cambridgereactordesign.com/ammonite/ammonite.html (accessed October 2021).
  • 104 Green RA, Brown RCD, Pletcher D. Org. Process Res. Dev. 2015; 19: 1424
  • 105 Green RA, Jolley KE, Al-Hadedi AAM, Pletcher D, Harrowven DC, De Frutos O, Mateos C, Klauber DJ, Rincón JA, Brown RCD. Org. Lett. 2017; 19: 2050
  • 106 Kabeshov MA, Musio B, Ley SV. React. Chem. Eng. 2017; 2: 822
  • 107 Houston SD, Fahrenhorst-Jones T, Xing H, Chalmers BA, Sykes ML, Stok JE, Farfan Soto C, Burns JM, Bernhardt PV, De Voss JJ, Boyle GM, Smith MT, Tsanaktsidis J, Savage GP, Avery VM, Williams CM. Org. Biomol. Chem. 2019; 17: 6790
  • 108 Chalmers BA, Xing H, Houston S, Clark C, Ghassabian S, Kuo A, Cao B, Reitsma A, Murray CEP, Stok JE, Boyle GM, Pierce CJ, Littler SW, Winkler DA, Bernhardt PV, Pasay C, De Voss JJ, McCarthy J, Parsons PG, Walter GH, Smith MT, Cooper HM, Nilsson SK, Tsanaktsidis J, Savage GP, Williams CM. Angew. Chem. Int. Ed. 2016; 55: 3580
  • 109 Collin DE, Jackman EH, Jouandon N, Sun W, Light ME, Harrowven DC, Linclau B. Synthesis 2021; 53: 1307
  • 110 Elsherbini M, Winterson B, Alharbi H, Folgueiras-Amador AA, Génot C, Wirth T. Angew. Chem. Int. Ed. 2019; 58: 9811
  • 111 www.vapourtec.com/products/flow-reactors/ion-electrochemical-reactor-features/ (accessed October 2021).
  • 112 Elsherbini M, Wirth T. Chem.–Eur. J. 2018; 24: 13399
  • 113 Watts K, Gattrell W, Wirth T. Beilstein J. Org. Chem. 2011; 7: 1108
  • 114 Winterson B, Rennigholtz T, Wirth T. Chem. Sci. 2021; 12: 9053
  • 115 Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. Angew. Chem. Int. Ed. 2017; 56: 15446
  • 116 Hoormann D, Jörissen J, Pütter H. Chem. Ing. Tech. 2005; 77: 1363
  • 117 Beck F. Electrochim. Acta 1973; 18: 359
  • 118 Beck F, Guthke H. Chem. Ing. Tech. 1969; 41: 943
  • 119 Fankhauser A, Ouattara L, Griesbach U, Fischer A, Pütter H, Comninellis C. J. Electroanal. Chem. 2008; 614: 107
  • 120 Cedheim L, Eberson L, Helgée B, Nyberg K, Servin R, Sternerup H. Acta Chem. Scand., Ser. B 1975; 29: 617
  • 121 Beck F. J. Appl. Electrochem. 1972; 2: 59
  • 122 Eberson L, Nyberg K, Sternerup H. Chem. Scr. 1973; 3: 12
  • 123 Eberson L, Hlavaty J, Jönsson L, Nyberg K, Servin R, Sternerup H, Wistrand L.-G. Acta Chem. Scand., Ser. B 1979; 33: 113
  • 124 Jud W, Kappe CO, Cantillo D. ChemElectroChem 2020; 7: 2777
  • 125 Love A, Lee DS, Gennari G, Jefferson-Loveday R, Pickering SJ, Poliakoff M, George M. Org. Process Res. Dev. 2021; 25: 1619
  • 126 Seidler J, Bernhard R, Haufe S, Neff C, Gärtner T, Waldvogel SR. Org. Process Res. Dev. 2021; in press; 10.1021/acs.oprd.1c00153
  • 127 Mo Y, Rughoobur G, Nambiar AMK, Zhang K, Jensen KF. Angew. Chem. Int. Ed. 2020; 59: 20890
  • 128 Schotten C, Taylor CJ, Bourne RA, Chamberlain TW, Nguyen BN, Kapur N, Willans CE. React. Chem. Eng. 2021; 6: 147