13 Electrochemistry in Laboratory Flow Systems
Book
Editor: Ackermann, L.
Title: Electrochemistry in Organic Synthesis
Print ISBN: 9783132442122; Online ISBN: 9783132442146; Book DOI: 10.1055/b000000126
1st edition © 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
Organic electrosynthesis in flow reactors is an area of increasing interest, with efficient mass transport and high electrode area to reactor volume present in many flow electrolysis cell designs facilitating higher rates of production with high selectivity. The controlled reaction environment available in flow cells also offers opportunities to develop new electrochemical processes. In this chapter, various types of electrochemical flow cells are reviewed in the context of laboratory synthesis, paying particular attention to how the different reactor environments impact upon the electrochemical processes, and the factors responsible for good cell performance. Coverage includes well-established plane-parallel-plate designs, reactors with small interelectrode gaps, extended-channel electrolysis cells, and highly sophisticated designs with rapidly rotating electrodes to enhance mass transport. In each case, illustrative electrosyntheses are presented.
Key words
organic electrochemistry - electrosynthesis - flow chemistry - mass transport - electrochemical cells - reactor design - anodic oxidation - cathodic reduction- 3 Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
- 4 Grimshaw J. Electrochemical Reactions and Mechanisms in Organic Chemistry. Elsevier:; Amsterdam 2000
- 6 Fundamentals and Applications of Organic Electrochemistry. Fuchigami T, Inagi S, Atobe M. Wiley; Chichester, UK 2014
- 13 Delahay P, Tobias CW, Lemmermann WG. Advances in Electrochemistry and Electrochemical Engineering. Wiley; New York 1962
- 19 Jüttner K, In: Encyclopedia of Electrochemistry Bard AJ, Stratmann M. Wiley-VCH Weinheim, Germany 2007; 5. 1
- 23 Paddon CA, Atobe M, Fuchigami T, He P, Watts P, Haswell SJ, Pritchard GJ, Bull SD, Marken F. J. Appl. Electrochem. 2006; 36: 617
- 28 Ziogas A, Kolb G, OʼConnell M, Attour A, Lapicque F, Matlosz M, Rode S. J. Appl. Electrochem. 2009; 39: 2297
- 29 Küpper M, Hessel V, Löwe H, Stark W, Kinkel J, Michel M, Schmidt-Traub H. Electrochim. Acta 2003; 48: 2889
- 31 Folgueiras-Amador AA, Wirth T. Science of Synthesis: Flow Chemistry in Organic Synthesis 2018; 147 10.1055/sos-SD-228-00106
- 35 Folgueiras-Amador AA, Jolley KE, Birkin PR, Brown RCD, Pletcher D, Pickering S, Sharabi M, de Frutos O, Mateos C, Rincón JA. Electrochem. Commun. 2019; 100: 6
- 40 www.ikaprocess.com/en/Products/Electro-Organic-Synthesis-Systems-cph-45/ElectraSyn-flow-csb-ES/ (accessed October 2021).
- 41 C-Flow range of electrochemical cells; www.ctechinnovation.com/our-products/c-flow/ (accessed October 2021).
- 55 Mo Y, Lu Z, Rughoobur G, Patil P, Gershenfeld N, Akinwande AI, Buchwald SL, Jensen KF. Science (Washington, D. C.) 2020; 368: 1352
- 56 Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey TJ, Anderson SL, Neurock M, Minteer SD, Baran PS. Science (Washington, D. C.) 2019; 363: 838
- 57 Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, deGruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc. 2019; 141: 6392
- 62 Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed., Wiley; New York 2001
- 63 Walsh FC. A First Course in Electrochemical Engineering. The Electrochemical Consultancy; Romsey, UK 1993
- 64 Kuleshova J, Hill-Cousins JT, Birkin PR, Brown RCD, Pletcher D, Underwood TJ. Electrochim. Acta 2011; 56: 4322
- 65 Kuleshova J, Hill-Cousins JT, Birkin PR, Brown RCD, Pletcher D, Underwood TJ. Electrochim. Acta 2012; 69: 197
- 66 Folgueiras-Amador AA, Wirth T, In: Flow Chemistry: Integrated Approaches for Practical Applications Luis SV, Garcia-Verdugo E. RSC Cambridge 2020; 153-198
- 67 Ošeka M, Laudadio G, van Leest NP, Dyga M, Bartolomeu AdeA, Gooßen LJ, de Bruin B, de Oliveira KT, Noël T. Chem 2021; 7: 255
- 69 Köckinger M, Hanselmann P, Roberge DM, Geotti-Bianchini P, Kappe CO, Cantillo D. Green Chem. 2021; 23: 2382
- 70 Bian M, Hua J, Ma T, Xu J, Cai C, Yang Z, Liu C, He W, Fang Z, Guo K. Org. Biomol. Chem. 2021; 19: 3207
- 79 Elsherbini M, Winterson B, Alharbi H, Folgueiras-Amador AA, Génot C, Wirth T. Angew. Chem. Int. Ed. 2019; 58: 9811
- 82 Cao Y, Adriaenssens B, Bartolomeu AdeA, Laudadio G, de Oliveira KT, Noël T. J. Flow Chem. 2020; 10: 191
- 83 Laudadio G, Bartolomeu AdeA, Verwijlen LMHM, Cao Y, de Oliveira KT, Noël T. J. Am. Chem. Soc. 2019; 141: 11832
- 84 Laudadio G, Barmpoutsis E, Schotten C, Struik L, Govaerts S, Browne DL, Noël T. J. Am. Chem. Soc. 2019; 141: 5664
- 86 Kong WJ, Finger LH, Messinis AM, Kuniyil R, Oliveira JCA, Ackermann L. J. Am. Chem. Soc. 2019; 141: 17198
- 88 Allen BDW, Hareram MD, Seastram AC, McBride T, Wirth T, Browne DL, Morrill LC. Org. Lett. 2019; 21: 9241
- 91 Collin DE, Folgueiras-Amador AA, Pletcher D, Light ME, Linclau B, Brown RCD. Chem.–Eur. J. 2020; 26: 374
- 100 Hill-Cousins JT, Kuleshova J, Green RA, Birkin PR, Pletcher D, Underwood TJ, Leach SG, Brown RCD. ChemSusChem 2012; 5: 326
- 105 Green RA, Jolley KE, Al-Hadedi AAM, Pletcher D, Harrowven DC, De Frutos O, Mateos C, Klauber DJ, Rincón JA, Brown RCD. Org. Lett. 2017; 19: 2050
- 107 Houston SD, Fahrenhorst-Jones T, Xing H, Chalmers BA, Sykes ML, Stok JE, Farfan Soto C, Burns JM, Bernhardt PV, De Voss JJ, Boyle GM, Smith MT, Tsanaktsidis J, Savage GP, Avery VM, Williams CM. Org. Biomol. Chem. 2019; 17: 6790
- 108 Chalmers BA, Xing H, Houston S, Clark C, Ghassabian S, Kuo A, Cao B, Reitsma A, Murray CEP, Stok JE, Boyle GM, Pierce CJ, Littler SW, Winkler DA, Bernhardt PV, Pasay C, De Voss JJ, McCarthy J, Parsons PG, Walter GH, Smith MT, Cooper HM, Nilsson SK, Tsanaktsidis J, Savage GP, Williams CM. Angew. Chem. Int. Ed. 2016; 55: 3580
- 109 Collin DE, Jackman EH, Jouandon N, Sun W, Light ME, Harrowven DC, Linclau B. Synthesis 2021; 53: 1307
- 110 Elsherbini M, Winterson B, Alharbi H, Folgueiras-Amador AA, Génot C, Wirth T. Angew. Chem. Int. Ed. 2019; 58: 9811
- 111 www.vapourtec.com/products/flow-reactors/ion-electrochemical-reactor-features/ (accessed October 2021).
- 115 Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. Angew. Chem. Int. Ed. 2017; 56: 15446
- 119 Fankhauser A, Ouattara L, Griesbach U, Fischer A, Pütter H, Comninellis C. J. Electroanal. Chem. 2008; 614: 107
- 120 Cedheim L, Eberson L, Helgée B, Nyberg K, Servin R, Sternerup H. Acta Chem. Scand., Ser. B 1975; 29: 617
- 123 Eberson L, Hlavaty J, Jönsson L, Nyberg K, Servin R, Sternerup H, Wistrand L.-G. Acta Chem. Scand., Ser. B 1979; 33: 113
- 125 Love A, Lee DS, Gennari G, Jefferson-Loveday R, Pickering SJ, Poliakoff M, George M. Org. Process Res. Dev. 2021; 25: 1619