Fensterbank, L.  et al.: 2021 Science of Synthesis, 2020/4: Free Radicals: Fundamentals and Applications in Organic Synthesis 1 DOI: 10.1055/sos-SD-234-00002
Free Radicals: Fundamentals and Applications in Organic Synthesis 1

1.1 Improving Radical Persistence through Confinement: A Survey

Weitere Informationen

Buch

Herausgeber: Fensterbank, L. ; Ollivier, C.

Autoren: André-Joyaux, E.; Bellanger, C.; Bertrand, M. P.; Besson, E. ; Bietti, M.; Braïda, B.; Cahoon, S. B.; Casano, G.; Chelli, S.; Chen, Y.; Chiba, S. ; Dénès, F. ; Derat, E.; Gastaldi, S. ; Gnägi, L.; Kaga, A.; Lakhdar, S. ; Liu, D.; Lu, X.-L.; Maestri, G. ; Melendez, C.; Ouari, O. ; Renaud, P. ; Rovis, T.; Serafino, A.; Shirakawa, E. ; Soulard, V.; Treacy, S. M.; Wang, B.; Wang, Y.-F.; Yoon, T. P.; Yorimitsu, H.; Zhang, F.-L.; Zhang, J.; Zhang, X.

Titel: Free Radicals: Fundamentals and Applications in Organic Synthesis 1

Print ISBN: 9783132435520; Online ISBN: 9783132435537; Buch-DOI: 10.1055/b000000087

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.; Fürstner, A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L

Typ: Mehrbändiges Werk

 


Abstract

Most organic radical species are transient and were long considered to be beyond control. Tremendous progress in the knowledge and understanding of their reactivity has enabled their use as standard intermediates in organic synthesis. In this review, strategies implemented to increase radical lifetimes, without modifying fundamentally their structural features, are presented. A wide array of systems has been designed that allow modulation of the level of confinement constraints. The ability of these systems to increase radical lifetime has now reached the point where a transient radical can become persistent, which opens up many new prospects for future applications.

 
  • 1 Gomberg M. J. Am. Chem. Soc. 1900; 22: 757
  • 2 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton, FL, USA 2007
  • 3 Hioe J, Zipse H. Org. Biomol. Chem. 2010; 8: 3609
  • 4 Zipse H. Top. Curr. Chem. 2006; 263: 163
  • 5 Hioe J, Zipse H, Encyclopedia of Radicals in Chemistry, Biology and Materials. Chatgilialoglu C, Studer A. Wiley-Blackwell; Oxford, UK 2012. 1. 449
  • 6 Griller D, Ingold KU. Acc. Chem. Res. 1976; 9: 13
  • 7 Tumanskii B, Karni M, Apeloig Y, Encyclopedia of Radicals in Chemistry, Biology and Materials. Chatgilialoglu C, Studer A. Wiley-Blackwell; Oxford, UK 2012. 4. 2117
  • 8 Rosenthal AJ, Mallet-Ladeira S, Bouhadir G, Bourissou D. Synthesis 2018; 50: 3671
  • 9 Karoui H, Le Moigne F, Ouari O, Tordo P, Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds. Hicks RG. Wiley; Chichester, UK 2010: 173
  • 10 Hicks RG. Org. Biomol. Chem. 2007; 5: 1321
  • 11 Kosower EM. Top. Curr. Chem. 1983; 112: 117
  • 12 Mas-Torrent M, Crivillers N, Rovira C, Veciana J. Chem. Rev. 2012; 112: 2506
  • 13 Turro NJ, Lei X.-G, Jockusch S, Li W, Liu Z, Abrams L, Ottaviani MF. J. Org. Chem. 2002; 67: 2606
  • 14 Baskir EG, Misochko EY, Nefedov OM. Russ. Chem. Rev. 2009; 78: 683
  • 15 Sastre G, Corma A. J. Mol. Catal. A: Chem. 2009; 305: 3
  • 16 Mouarrawis V, Plessius R, van der Vlugt JI, Reek JNH. Frontiers in Chemistry 2018; 6
  • 17 Pan X, Bao X, Nanomaterials in Catalysis. Serp P, Philippot K. Wiley-VCH; Weinheim, Germany 2013: 415
  • 18 Thomas JM, Raja R. Acc. Chem. Res. 2008; 41: 708
  • 19 Ruan X, Sun Y, Du W, Tang Y, Liu Q, Zhang Z, Doherty W, Frost RL, Qian G, Tsang DCW. Bioresour. Technol. 2019; 281: 457
  • 20 Nwosu UG, Roy A, dela Cruz ALN, Dellinger B, Cook R. Environ. Sci.: Processes Impacts 2016; 18: 42
  • 21 Patil SV, Argyropoulos DS. ChemSusChem 2017; 10: 3284
  • 22 Zhang C, Huang Z, Lu J, Luo N, Wang F. J. Am. Chem. Soc. 2018; 140: 2032
  • 23 Baciocchi E, Bietti M, Di Fusco M, Lanzalunga O. J. Org. Chem. 2007; 72: 8748
  • 24 Panagiota S, Louloudi M, Deligiannakis Y. Chem. Phys. Lett. 2009; 472: 85
  • 25 Hirano T, Li W, Abrams L, Krusic PJ, Ottaviani MF, Turro NJ. J. Am. Chem. Soc. 1999; 121: 7170
  • 26 Moscatelli A, Liu Z, Lei X, Dyer J, Abrams L, Ottaviani MF, Turro NJ. J. Am. Chem. Soc. 2008; 130: 11344
  • 27 Turro NJ, Jockusch S, Lei X.-G. J. Org. Chem. 2002; 67: 5779
  • 28 Lei X.-G, Jockusch S, Ottaviani MF, Turro NJ. Photochem. Photobiol. Sci. 2003; 2: 1095
  • 29 Da Silva JP, Jockusch S, Martinho JMG, Ottaviani MF, Turro NJ. Org. Lett. 2010; 12: 3062
  • 30 Grabner G, Richard C, Köhler G. J. Am. Chem. Soc. 1994; 116: 11470
  • 31 Morkin TL, Turro NJ, Kleinman MH, Brindle CS, Kramer WH, Gould IR. J. Am. Chem. Soc. 2003; 125: 14917
  • 32 Fukuzumi S, Itoh A, Suenobu T, Ohkubo K. J. Phys. Chem. C 2014; 118: 24188
  • 33 Vibert F, Marque SRA, Bloch E, Queyroy S, Bertrand MP, Gastaldi S, Besson E. Chem. Sci. 2014; 5: 4716
  • 34 Vibert F, Bloch E, Bertrand MP, Queyroy S, Gastaldi S, Besson E. New J. Chem. 2017; 41: 6678
  • 35 Vibert F, Marque SRA, Bloch E, Queyroy S, Bertrand MP, Gastaldi S, Besson E. J. Phys. Chem. C 2015; 119: 5434
  • 36 Vibert F, Bloch E, Bertrand MP, Gastaldi S, Besson E. J. Phys. Chem. C 2018; 122: 681
  • 37 Dol C, Gerbaud G, Guigliarelli B, Bloch E, Gastaldi S, Besson E. Phys. Chem. Chem. Phys. 2019; 21: 16337
  • 38 Stathi P, Gournis D, Deligiannakis Y, Rudolf P. Langmuir 2015; 31: 10508
  • 39 Dol C, Vibert F, Bertrand MP, Lalevée J, Gastaldi S, Besson E. ACS Macro Lett. 2017; 6: 117
  • 40 Arčon D, Pregelj M, Cevc P, Rotas G, Pagona G, Tagmatarchis N, Ewels C. Chem. Commun. (Cambridge) 2007; 3386
  • 41 Fülöp F, Rockenbauer A, Simon F, Pekker S, Korecz L, Garaj S, Jánossy A. Chem. Phys. Lett. 2001; 334: 233
  • 42 Pagona G, Rotas G, Khlobystov AN, Chamberlain TW, Porfyrakis K, Tagmatarchis N. J. Am. Chem. Soc. 2008; 130: 6062
  • 43 Simon F, Kuzmany H, Bernardi J, Hauke F, Hirsch A. Carbon 2006; 44: 1958
  • 44 Simon F, Kuzmany H, Fülöp F, Jánossy A, Bernardi J, Hauke F, Hirsch A. Phys. Status Solidi B 2006; 243: 3263
  • 45 Lucarini M, Luppi B, Pedulli GF, Roberts BP. Chem.–Eur. J. 1999; 5: 2048
  • 46 Lucarini M, Roberts BP. Chem. Commun. (Cambridge) 1996; 1577
  • 47 Franchi P, Lucarini M, Pedulli GF, Sciotto D. Angew. Chem. Int. Ed. 2000; 39: 263
  • 48 Rao VP, Zimmt MB, Turro NJ. J. Photochem. Photobiol., A 1991; 60: 355
  • 49 Jeon WS, Kim H.-J, Lee C, Kim K. Chem. Commun. (Cambridge) 2002; 1828
  • 50 Fahrenbach AC, Sampath S, Late DJ, Barnes JC, Kleinman SL, Valley N, Hartlieb KJ, Liu Z, Dravid VP, Schatz GC, Van Duyne RP, Stoddart JF. ACS Nano 2012; 6: 9964
  • 51 Lipke MC, Cheng T, Wu Y, Arslan H, Xiao H, Wasielewski MR, Goddard III WA, Stoddart JF. J. Am. Chem. Soc. 2017; 139: 3986
  • 52 Stergiou A, Rio J, Griwatz JH, Arčon D, Wegner HA, Ewels CP, Tagmatarchis N. Angew. Chem. Int. Ed. 2019; 58: 17745
  • 53 Eelkema R, Maeda K, Odell B, Anderson HL. J. Am. Chem. Soc. 2007; 129: 12384
  • 54 Nelsen SF. J. Am. Chem. Soc. 1967; 89: 5925
  • 55 Kumar S, Ajayakumar MR, Hundal G, Mukhopadhyay P. J. Am. Chem. Soc. 2014; 136: 12004
  • 56 Song Q, Li F, Wang Z, Zhang X. Chem. Sci. 2015; 6: 3342
  • 57 Zhao X, Liu F, Zhao Z, Karoui H, Bardelang D, Ouari O, Liu S. Org. Biomol. Chem. 2018; 16: 3809
  • 58 Jiao T, Cai K, Nelson JN, Jiao Y, Qiu Y, Wu G, Zhou J, Cheng C, Shen D, Feng Y, Liu Z, Wasielewski MR, Stoddart JF, Li H. J. Am. Chem. Soc. 2019; 141: 16915
  • 59 Lu B, Li P, Wang B, Mullen K, Yin M. Nat. Commun. 2019; 10: 767
  • 60 Wu S, Wang W, Li M, Cao L, Lyu F, Yang M, Wang Z, Shi Y, Nan B, Yu S, Sun Z, Liu Y, Lu Z. Nat. Commun. 2016; 7: 13318
  • 61 Kolek M, Otteny F, Schmidt P, Mück-Lichtenfeld C, Einholz C, Becking J, Schleicher E, Winter M, Bieker P, Esser B. Energy Environ. Sci. 2017; 10: 2334
  • 62 Gu S, Wu S, Cao L, Li M, Qin N, Zhu J, Wang Z, Li Y, Li Z, Chen J, Lu Z. J. Am. Chem. Soc. 2019; 141: 9623
  • 63 Sindt AJ, DeHaven BA, McEachern Jr DF, Dissanayake DMMM, Smith MD, Vannucci AK, Shimizu LS. Chem. Sci. 2019; 10: 2670
  • 64 Huo G.-F, Shi X, Tu Q, Hu Y.-X, Wu G.-Y, Yin G.-Q, Li X, Xu L, Ding H.-M, Yang H.-B. J. Am. Chem. Soc. 2019; 141: 16014
  • 65 DeHaven BA, Goodlett DW, Sindt AJ, Noll N, De Vetta M, Smith MD, Martin CR, González L, Shimizu LS. J. Am. Chem. Soc. 2018; 140: 13064
  • 66 DeHaven BA, Tokarski III JT, Korous AA, Mentink-Vigier F, Makris TM, Brugh AM, Forbes MDE, van Tol J, Bowers CR, Shimizu LS. Chem.–Eur. J. 2017; 23: 8315
  • 67 Geer MF, Walla MD, Solntsev KM, Strassert CA, Shimizu LS. J. Org. Chem. 2013; 78: 5568
  • 68 DeHaven BA, Liberatore HK, Greer A, Richardson SD, Shimizu LS. ACS Omega 2019; 4: 8290