Molander, G. A.: 2020 Science of Synthesis, 2019/5: Dual Catalysis in Organic Synthesis 2 DOI: 10.1055/sos-SD-232-00208
Dual Catalysis in Organic Synthesis 2

2.3 Dual Catalysis with Two Organocatalysts

More Information

Book

Editor: Molander, G. A.

Authors: Bäckvall, J.-E.; Cruz, F. A.; Deng, Y.-H.; Diéguez, M.; Dong, V. M.; Galman, J. L.; Gröger, H. ; Montgomery, S. L.; Pàmies, O.; Parmeggiani, F.; Shao, Z.; Shi, X.; Turner, N. J.; Vitale, M. R. ; Wang, H.-Y.; Wang, J.; Yamashita, Y.; Zeitler, K. ; Zhao, G.

Title: Dual Catalysis in Organic Synthesis 2

Print ISBN: 978313242981-9; Online ISBN: 978313242985-7; Book DOI: 10.1055/b-006-166041

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 

Abstract

The field of asymmetric organocatalysis has attracted the attention of chemists due to the environmentally benign conditions, particularly for the synthesis of chiral molecules, bioactive compounds, natural products, and drugs. Besides the conventional approaches using a single organocatalyst in asymmetric reactions, dual catalysis with two organocatalysts has emerged as an important strategy for resolving existing challenging problems, including the synthesis of complex molecules, improvement of enantioselectivities, and the development of new catalytic mechanisms. In this review, selected recent examples of the combination of two organocatalysts are covered in detail. Moreover, future perspectives are also described.

 
  • 1 K. W. Quasdorf,, L. E. Overman,. Nature (London). 2014; 516: 181
  • 2 H.-U. Blaser,. Chem. Commun. (Cambridge). 2003; 293
  • 3 H.-U. Blaser,, F. Spindler,, M. Studer,. Appl. Catal., A. 2001; 221: 119
  • 4 A. Berkessel,, H. Gröger,. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. 1st ed. Wiley VCH; Weinheim, Germany 2005
  • 5 P. I. Dalko,, L. Moisan,. Angew. Chem. Int. Ed.. 2001; 40: 3726
  • 6 Y. Zhu,, Q. Wang,, R. G. Cornwall,, Y. Shi,. Chem. Rev.. 2014; 114: 8199
  • 7 S. Bertelsen,, K. A. Jørgensen,. Chem. Soc. Rev.. 2009; 38: 2178
  • 8 Science of Synthesis: Asymmetric Organocatalysis List, B., Ed.; Thieme: Stuttgart (2011); Vol. 1.
  • 9 Science of Synthesis: Asymmetric Organocatalysis Maruoka, K., Ed.; Thieme: Stuttgart (2011); Vol. 2.
  • 10 R. C. Wende,, P. R. Schreiner,. Green Chem.. 2012; 14: 1821
  • 11 S. M. Inamdar,, V. S. Shinde,, N. T. Patil,. Org. Biomol. Chem.. 2015; 13: 8116
  • 14 P. Chauhan,, S. Mahajan,, D. Enders,. Acc. Chem. Res.. 2017; 50: 2809
  • 15 J.-L. Li,, T.-Y. Liu,, Y.-C. Chen,. Acc. Chem. Res.. 2012; 45: 1491
  • 16 S. Mukherjee,, J. W. Yang,, S. Hoffmann,, B. List,. Chem. Rev.. 2007; 107: 5471
  • 17 B. Simmons,, A. M. Walji,, D. W. C. MacMillan,. Angew. Chem. Int. Ed.. 2009; 48: 4349
  • 18 S. T. Scroggins,, Y. Chi,, J. M. J. Fréchet,. Angew. Chem. Int. Ed.. 2010; 49: 2393
  • 19 H. Lin,, Y. Tan,, X.-W. Sun,, G.-Q. Lin,. Org. Lett.. 2012; 14: 3818
  • 20 A. Desmarchelier,, J. Marrot,, X. Moreau,, C. Greck,. Org. Biomol. Chem.. 2011; 9: 994
  • 21 M. Rubiralta,, E. Giralt,, A. Diez,. Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and Its Derivatives. Elsevier; Amsterdam 1991
  • 22 Y. Wang,, D.-F. Yu,, Y.-Z. Liu,, H. Wei,, Y.-C. Luo,, D. J. Dixon,, P.-F. Xu,. Chem.–Eur. J.. 2010; 16: 3922
  • 23 Y. Wang,, R.-G. Han,, Y.-L. Zhao,, S. Yang,, P.-F. Xu,, D. J. Dixon,. Angew. Chem. Int. Ed.. 2009; 48: 9834
  • 24 M. H. Wang,, K. A. Scheidt,. Angew. Chem. Int. Ed.. 2016; 55: 14912
  • 25 M. N. Hopkinson,, C. Richter,, M. Schedler,, F. Glorius,. Nature (London). 2014; 510: 485
  • 26 X. Bugaut,, F. Glorius,. Chem. Soc. Rev.. 2012; 41: 3511
  • 27 V. Nair,, S. Vellalath,, B. P. Babu,. Chem. Soc. Rev.. 2008; 37: 2691
  • 28 K. E. Ozboya,, T. Rovis,. Chem. Sci.. 2011; 2: 1835
  • 29 Z.-J. Jia,, K. Jiang,, Q.-Q. Zhou,, L. Dong,, Y.-C. Chen,. Chem. Commun. (Cambridge). 2013; 49: 5892
  • 30 S. P. Lathrop,, T. Rovis,. J. Am. Chem. Soc.. 2009; 131: 13628
  • 31 B. C. Jacobsen,, K. L. Jensen,, J. Udmark,, K. A. Jørgensen,. Org. Lett.. 2011; 13: 4790
  • 32 M. Binanzer,, S.-Y. Hsieh,, J. W. Bode,. J. Am. Chem. Soc.. 2011; 133: 19698
  • 33 C. M. Filloux,, S. P. Lathrop,, T. Rovis,. Proc. Natl. Acad. Sci. U. S. A.. 2010; 107: 48
  • 34 G. Bergonzini,, S. Vera,, P. Melchiorre,. Angew. Chem. Int. Ed.. 2010; 49: 9685
  • 35 H. Rahaman,, Madarász,, I. Pápai,, P. M. Pihko,. Angew. Chem. Int. Ed.. 2011; 50: 6123
  • 36 G. Talavera,, E. Reyes,, J. L. Vicario,, L. Carrillo,. Angew. Chem. Int. Ed.. 2012; 51: 4104
  • 37 X. Yang,, T. Wu,, R. J. Phipps,, F. D. Toste,. Chem. Rev.. 2015; 115: 826
  • 39 X. Yang,, R. J. Phipps,, F. D. Toste,. J. Am. Chem. Soc.. 2014; 136: 5225
  • 40 S. Lin,, L. Deiana,, G.-L. Zhao,, J. Sun,, A. Córdova,. Angew. Chem. Int. Ed.. 2011; 50: 7624
  • 41 N. J. A. Martin,, B. List,. J. Am. Chem. Soc.. 2006; 128: 13368
  • 42 Y.-Q. Yang,, Z. Chai,, H.-F. Wang,, X.-K. Chen,, H.-F. Cui,, C.-W. Zheng,, H. Xiao,, P. Li,, G. Zhao,. Chem.–Eur. J.. 2009; 15: 13295
  • 43 Y. Gu,, Y. Wang,, T.-Y. Yu,, Y.-M. Liang,, P.-F. Xu,. Angew. Chem. Int. Ed.. 2014; 53: 14128
  • 44 C. Zhao,, S. B. Chen,, D. Seidel,. J. Am. Chem. Soc.. 2016; 138: 9053
  • 45 Y. Hayashi,, N. Umekubo,. Angew. Chem. Int. Ed.. 2018; 57: 1958
  • 46 H.-L. Cui,, J. Peng,, X. Feng,, W. Du,, K. Jiang,, Y.-C. Chen,. Chem.–Eur. J.. 2009; 15: 1574
  • 47 Y. Yao,, J.-L. Li,, Q.-Q. Zhou,, L. Dong,, Y.-C. Chen,. Chem.–Eur. J.. 2013; 19: 9447
  • 48 J. Y. See,, H. Yang,, Y. Zhao,, M. W. Wong,, Z. Ke,, Y.-Y. Yeung,. ACS Catal.. 2018; 8: 850
  • 49 C. K. De,, E. G. Klauber,, D. Seidel,. J. Am. Chem. Soc.. 2009; 131: 17060
  • 50 E. G. Klauber,, N. Mittal,, T. K. Shah,, D. Seidel,. Org. Lett.. 2011; 13: 2464
  • 51 E. G. Klauber,, C. K. De,, T. K. Shah,, D. Seidel,. J. Am. Chem. Soc.. 2010; 132: 13624
  • 52 D. Lucet,, T. L. Gall,, C. Mioskowski,. Angew. Chem. Int. Ed.. 1998; 37: 2580
  • 53 S. R. S. S. Kotti,, C. Timmons,, G. Li,. Chem. Biol. Drug Des.. 2006; 67: 101
  • 54 C. K. De,, D. Seidel,. J. Am. Chem. Soc.. 2011; 133: 14538
  • 55 C. K. De,, N. Mittal,, D. Seidel,. J. Am. Chem. Soc.. 2011; 133: 16802
  • 56 V. Kumar,, S. Mukherjee,. Chem. Commun. (Cambridge). 2013; 49: 11203
  • 57 J. Merad,, C. Lalli,, G. Bernadat,, J. Maury,, G. Masson,. Chem.–Eur. J.. 2018; 24: 3925
  • 58 M. Rueping,, A. Kuenkel,, I. Atodiresei,. Chem. Soc. Rev.. 2011; 40: 4539
  • 59 D. M. Rubush,, M. A. Morges,, B. J. Rose,, D. H. Thamm,, T. Rovis,. J. Am. Chem. Soc.. 2012; 134: 13554
  • 60 M. Raynal,, P. Ballester,, A. Vidal-Ferran,, P. W. N. M. van Leeuwen,. Chem. Soc. Rev.. 2014; 43: 1660
  • 61 T. Mandal,, C.-G. Zhao,. Angew. Chem. Int. Ed.. 2008; 47: 7714
  • 62 H. Huang,, S. Konda,, C.-G. Zhao,. Angew. Chem. Int. Ed.. 2016; 55: 2213
  • 63 Z.-B. Li,, S.-P. Luo,, Y. Guo,, A.-B. Xia,, D.-Q. Xu,. Org. Biomol. Chem.. 2010; 8: 2505
  • 64 A.-B. Xia,, D.-Q. Xu,, S.-P. Luo,, J.-R. Jiang,, J. Tang,, Y.-F. Wang,, Z.-Y. Xu,. Chem.–Eur. J.. 2010; 16: 801
  • 65 M. L. Clarke,, J. A. Fuentes,. Angew. Chem. Int. Ed.. 2007; 46: 930
  • 66 Reis,, S. Eymur,, B. Reis,, A. S. Demir,. Chem. Commun. (Cambridge). 2009; 1088
  • 67 Martínez-Castañeda,, B. Poladura,, H. Rodríguez-Solla,, C. Concellón,, V. del Amo,. Org. Lett.. 2011; 13: 3032
  • 68 H.-Y. Wang,, K. Zhang,, C.-W. Zheng,, Z. Chai,, D.-D. Cao,, J.-X. Zhang,, G. Zhao,. Angew. Chem. Int. Ed.. 2015; 54: 1775
  • 69 H.-Y. Wang,, C.-W. Zheng,, Z. Chai,, J.-X. Zhang,, G. Zhao,. Nat. Commun.. 2016; 7: 12720
  • 71 T. Akiyama,, K. Mori,. Chem. Rev.. 2015; 115: 9277
  • 72 T. Akiyama,, J. Itoh,, K. Yokota,, K. Fuchibe,. Angew. Chem., Int. Ed.. 2004; 43: 1566
  • 73 D. Uraguchi,, M. Terada,. J. Am. Chem. Soc.. 2004; 126: 5356
  • 77 T. Hashimoto,, A. O. Gálvez,, K. Maruoka,. J. Am. Chem. Soc.. 2013; 135: 17667