Molander, G. A.: 2020 Science of Synthesis, 2019/5: Dual Catalysis in Organic Synthesis 2 DOI: 10.1055/sos-SD-232-00041
Dual Catalysis in Organic Synthesis 2

2.1.3 Gold/Organocatalyst Dual Catalysis

More Information

Book

Editor: Molander, G. A.

Authors: Bäckvall, J.-E.; Cruz, F. A.; Deng, Y.-H.; Diéguez, M.; Dong, V. M.; Galman, J. L.; Gröger, H. ; Montgomery, S. L.; Pàmies, O.; Parmeggiani, F.; Shao, Z.; Shi, X.; Turner, N. J.; Vitale, M. R. ; Wang, H.-Y.; Wang, J.; Yamashita, Y.; Zeitler, K. ; Zhao, G.

Title: Dual Catalysis in Organic Synthesis 2

Print ISBN: 978313242981-9; Online ISBN: 978313242985-7; Book DOI: 10.1055/b-006-166041

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 

Abstract

Since the beginning of the 21st century, gold catalysis and organocatalysis have become two important branches in modern synthetic methodology thanks to the tremendous efforts the synthetic chemistry community have devoted to these two fields. While gold catalysis demonstrates superior capability in the activation of C-C multiple bonds, organocatalysis has been a remarkable tool for the activation and functionalization of carbonyl compounds, such as aldehydes and ketones, in a stereoselective fashion. Combining these two powerful, yet complementary, catalytic modes in a dual-catalytic manner will lead to even more-efficient and sophisticated catalytic systems and, thus, dual gold/organocatalysis has become a hot topic in the past decade. In this chapter, a summary of reported examples of dual gold/organocatalysis are discussed, including gold/aminocatalysis, gold/Brønsted acid catalysis, and gold/hydrogen-bonding catalysis.

 
  • 1 A. S. K. Hashmi,. Gold Bull. (Berlin, Ger.). 2004; 37: 51
  • 2 A. Fürstner,, P. W. Davies,. Angew. Chem. Int. Ed.. 2007; 46: 3410
  • 4 E. Jiménez-Núñez,, A. M. Echavarren,. Chem. Rev.. 2008; 108: 3326
  • 5 D. J. Gorin,, B. D. Sherry,, F. D. Toste,. Chem. Rev.. 2008; 108: 3351
  • 6 R. Dorel,, A. M. Echavarren,. Chem. Rev.. 2015; 115: 9028
  • 7 S. Mukherjee,, J. W. Yang,, S. Hoffmann,, B. List,. Chem. Rev.. 2007; 107: 5471
  • 8 A. Erkkilä,, I. Majander,, P. M. Pihko,. Chem. Rev.. 2007; 107: 5416
  • 10 A. G. Doyle,, E. N. Jacobsen,. Chem. Rev.. 2007; 107: 5713
  • 11 S. E. Denmark,, G. L. Beutner,. Angew. Chem. Int. Ed.. 2008; 47: 1560
  • 12 D. Enders,, O. Niemeier,, A. Henseler,. Chem. Rev.. 2007; 107: 5606
  • 13 A. Duschek,, S. F. Kirsch,. Angew. Chem. Int. Ed.. 2008; 47: 5703
  • 14 C. Zhong,, X. Shi,. Eur. J. Org. Chem.. 2010; 2999
  • 15 C. C. J. Loh,, D. Enders,. Chem.–Eur. J.. 2012; 18: 10212
  • 17 A. Gualandi,, L. Mengozzi,, C. M. Wilson,, P. G. Cozzi,. Chem.–Asian J.. 2014; 9: 984
  • 18 Y. Deng,, S. Kumar,, H. Wang,. Chem. Commun. (Cambridge). 2014; 50: 4272
  • 19 S. Afewerki,, A. Córdova,. Chem. Rev.. 2016; 116: 13512
  • 20 J. T. Binder,, B. Crone,, T. T. Haug,, H. Menz,, S. F. Kirsch,. Org. Lett.. 2008; 10: 1025
  • 21 S. Belot,, K. A. Vogt,, C. Besnard,, N. Krause,, A. Alexakis,. Angew. Chem. Int. Ed.. 2009; 48: 8923
  • 22 D. Hack,, C. C. J. Loh,, J. M. Hartmann,, G. Raabe,, D. Enders,. Chem.–Eur. J.. 2014; 20: 3917
  • 23 K. L. Jensen,, P. T. Franke,, C. Arróniz,, S. Kobbelgaard,, K. A. Jørgensen,. Chem.–Eur. J.. 2010; 16: 1750
  • 24 T. Zweifel,, D. Hollmann,, B. Prüger,, M. Nielsen,, K. A. Jørgensen,. Tetrahedron: Asymmetry. 2010; 21: 1624
  • 25 X. Wu,, M.-L. Li,, D.-F. Chen,, S.-S. Chen,. J. Org. Chem.. 2014; 79: 4743
  • 26 J. Fernández-Casado,, R. Nelson,, J. L. Mascareñas,, F. López,. Chem. Commun. (Cambridge). 2016; 52: 2909
  • 27 A. Ballesteros,, P. Morán-Poladura,, J. M. González,. Chem. Commun. (Cambridge). 2016; 52: 2905
  • 28 M. Chiarucci,, M. di Lillo,, A. Romaniello,, P. G. Cozzi,, G. Cera,, M. Bandini,. Chem. Sci.. 2012; 3: 2859
  • 29 D. Parmar,, E. Sugiono,, S. Raja,, M. Rueping,. Chem. Rev.. 2014; 114: 9047
  • 30 S. M. Inamdar,, A. Konala,, N. T. Patil,. Chem. Commun. (Cambridge). 2014; 50: 15124
  • 31 S. Zhang,, F. Wei,, C. Song,, J. Jia,, Z. Xu,. Chin. J. Chem.. 2014; 32: 937
  • 32 G. L. Hamilton,, E. J. Kang,, M. Mba,, F. D. Toste,. Science (Washington, D. C.). 2007; 317: 496
  • 33 Z.-Y. Han,, H. Xiao,, X.-H. Chen,, L.-Z. Gong,. J. Am. Chem. Soc.. 2009; 131: 9182
  • 34 A. W. Gregory,, P. Jakubec,, P. Turner,, D. J. Dixon,. Org. Lett.. 2013; 15: 4330
  • 35 Z.-Y. Han,, D.-F. Chen,, Y.-Y. Wang,, R. Guo,, P.-S. Wang,, L.-Z. Gong,. J. Am. Chem. Soc.. 2012; 134: 6532
  • 36 D. Qian,, J. Zhang,. Chem.–Eur. J.. 2013; 19: 6984
  • 37 X.-Y. Liu,, C.-M. Che,. Org. Lett.. 2009; 11: 4204
  • 38 X.-F. Tu,, L.-Z. Gong,. Angew. Chem. Int. Ed.. 2012; 51: 11346
  • 39 N. T. Patil,, V. S. Raut,, R. B. Tella,. Chem. Commun. (Cambridge). 2013; 49: 570
  • 40 V. S. Shinde,, M. V. Mane,, K. Vanka,, A. Mallick,, N. T. Patil,. Chem.–Eur. J.. 2015; 21: 975
  • 41 R. L. LaLonde,, Z. J. Wang,, M. Mba,, A. D. Lackner,, F. D. Toste,. Angew. Chem. Int. Ed.. 2010; 49: 598
  • 42 A. K. Mourad,, J. Leutzow,, C. Czekelius,. Angew. Chem. Int. Ed.. 2012; 51: 11149
  • 43 H. Wu,, Y.-P. He,, L.-Z. Gong,. Adv. Synth. Catal.. 2012; 354: 975
  • 44 S. Dhiman,, S. S. V. Ramasastry,. Org. Lett.. 2015; 17: 5116
  • 45 Y.-L. Du,, Y. Hu,, Y.-F. Zhu,, X.-F. Tu,, Z.-Y. Han,, L.-Z. Gong,. J. Org. Chem.. 2015; 80: 4754
  • 46 F. Zhao,, N. Li,, Y.-F. Zhu,, Z.-Y. Han,. Org. Lett.. 2016; 18: 1506
  • 47 M. E. Muratore,, C. A. Holloway,, A. W. Pilling,, R. I. Storer,, G. Trevitt,, D. J. Dixon,. J. Am. Chem. Soc.. 2009; 131: 10796
  • 48 Z.-Y. Han,, R. Guo,, P.-S. Wang,, D.-F. Chen,, H. Xiao,, L.-Z. Gong,. Tetrahedron Lett.. 2011; 52: 5963
  • 49 X. Wu,, M.-L. Li,, P.-S. Wang,. J. Org. Chem.. 2014; 79: 419
  • 50 A. A. Rexit,, M. Mailikezati,. Tetrahedron Lett.. 2015; 56: 2651
  • 51 X.-Y. Liu,, Y.-P. Xiao,, F.-M. Siu,, L.-C. Ni,, Y. Chen,, L. Wang,, C.-M. Che,. Org. Biomol. Chem.. 2012; 10: 7208
  • 52 S. Fleischer,, S. Werkmeister,, S. Zhou,, K. Junge,, M. Beller,. Chem.–Eur. J.. 2012; 18: 9005
  • 53 Y.-P. He,, H. Wu,, D.-F. Chen,, J. Yu,, L.-Z. Gong,. Chem.–Eur. J.. 2013; 19: 5232
  • 54 S. Harada,, E. Moriguchi,, M. Kono,, Y. Hamada,, T. Nemoto,. Tetrahedron Lett.. 2015; 56: 6266
  • 55 S. M. Inamdar,, R. G. Gonnade,, N. T. Patil,. Org. Biomol. Chem.. 2017; 15: 863
  • 56 C. Wang,, Z.-Y. Han,, H.-W. Luo,, L.-Z. Gong,. Org. Lett.. 2010; 12: 2266
  • 57 N. T. Patil,, A. K. Mutyala,, A. Konala,, R. B. Tella,. Chem. Commun. (Cambridge). 2012; 48: 3094
  • 58 H. Wu,, Y.-P. He,, L.-Z. Gong,. Org. Lett.. 2013; 15: 460
  • 59 J. Calleja,, A. B. González-Pérez,, Á. R. de Lera,, R. Álvarez,, F. J. Fañanas,, F. Rodríguez,. Chem. Sci.. 2014; 5: 996
  • 60 L. Stegbauer,, F. Sladojevich,, D. J. Dixon,. Chem. Sci.. 2012; 3: 942
  • 61 D. Monge,, K. L. Jensen,, P. T. Franke,, L. Lykke,, K. A. Jørgensen,. Chem.–Eur. J.. 2010; 16: 9478
  • 62 W. Guo,, L. Li,, Q. Ding,, X. Lin,, X. Liu,, K. Wang,, Y. Liu,, H. Fan,, C. Li,. ACS Catal.. 2018; 8: 10180
  • 63 D. M. Barber,, H. J. Sanganee,, D. J. Dixon,. Org. Lett.. 2012; 14: 5290
  • 64 X. Chen,, H. Chen,, X. Ji,, H. Jiang,, Z.-J. Yao,, H. Liu,. Org. Lett.. 2013; 15: 1846
  • 65 C. C. J. Loh,, J. Badorrek,, G. Raabe,, D. Enders,. Chem.–Eur. J.. 2011; 17: 13409
  • 66 Y.-L. Zhao,, Z.-Y. Cao,, X.-P. Zeng,, J.-M. Shi,, Y.-H. Yu,, J. Zhou,. Chem. Commun. (Cambridge). 2016; 52: 3943
  • 67 Z.-Y. Cao,, Y.-L. Zhao,, J. Zhou,. Chem. Commun. (Cambridge). 2016; 52: 2537
  • 68 M. Ganesh,, D. Seidel,. J. Am. Chem. Soc.. 2008; 130: 16464
  • 69 M. F. A. Adamo,, G. Bellini,, S. Suresh,. Tetrahedron. 2011; 67: 5784
  • 70 Y.-N. Gao,, F.-C. Shi,, Q. Xu,, M. Shi,. Chem.–Eur. J.. 2016; 22: 6803