Molander, G. A.: 2020 Science of Synthesis, 2019/4: Dual Catalysis in Organic Synthesis 1 DOI: 10.1055/sos-SD-231-00041
Dual Catalysis in Organic Synthesis 1

1.1.4 Iridium/Zinc and Iridium/Copper Dual Catalysis

More Information

Book

Editor: Molander, G. A.

Authors: Barriault, L. ; Bhoyare, V. W.; Hashmi, A. S. K. ; He, R.; Huo, X.; Kim, U B.; Lee, S.-g.; Molander, G. A.; Muralirajan, K.; Nakao, Y.; Patil, N. T.; Primer, D. N.; Riant, O.; Rohe, S.; Rout, S. K.; Rueping, M. ; Shi, X.; Tathe, A. G.; Tellis, J. C.; Wang, J.; Zhang, W. ; Zidan, M.

Title: Dual Catalysis in Organic Synthesis 1

Print ISBN: 9783132429765; Online ISBN: 9783132429802; Book DOI: 10.1055/b-006-164899

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Synergistic bimetallic catalysis is gaining increasing attention due to its advantages over traditional catalytic methodologies. These advantages include double activation, accurate control of reaction sites, double stereochemical control, and potential in stereodivergent synthesis. This review documents advances in the field and provides an up-to-date overview of recent developments in the use of iridium/zinc and iridium/copper catalyst systems.

 
  • 1 Crabtree RH. The Organometallic Chemistry of the Transition Metals. Wiley; Hoboken, NJ 2005
  • 2 Catalytic Asymmetric Synthesis. Ojima I. Wiley; Hoboken, NJ 2009
  • 3 Hartwig JF. Organotransition Metal Chemistry: From Bonding to Catalysis. University Science Books; Sausalito, CA 2010
  • 5 Privileged Chiral Ligands and Catalysts. Zhou Q.-L. Wiley-VCH; Weinheim, Germany 2011
  • 6 Yoon TP, Jacobsen EN. Science (Washington, D. C.). 2003; 299: 1691
  • 7 Schindler CS, Jacobsen EN. Science (Washington, D. C.). 2013; 340: 1052
  • 8 Oliveira MT, Luparia M, Audisio D, Maulide N. Angew. Chem. Int. Ed.. 2013; 52: 13149
  • 10 Krautwald S, Carreira EM. J. Am. Chem. Soc.. 2017; 139: 5627
  • 11 Bihani M, Zhao JC.-G. Adv. Synth. Catal.. 2017; 359: 534
  • 12 Beletskaya IP, Nájera C, Yus M. Chem. Rev.. 2018; 118: 5080
  • 13 van den Beuken EK, Feringa BL. Tetrahedron. 1998; 54: 12985
  • 14 Shibasaki M, Yoshikawa N. Chem. Rev.. 2002; 102: 2187
  • 15 Shibasaki M, Matsunaga S. Chem. Soc. Rev.. 2006; 35: 269
  • 16 Shibasaki M, Kanai M, Matsunaga S, Kumagai N. Acc. Chem. Res.. 2009; 42: 1117
  • 19 Bratko I, Gómez M. Dalton Trans.. 2013; 42: 10664
  • 21 Fu J, Huo X, Li B, Zhang W. Org. Biomol. Chem.. 2017; 15: 9747
  • 23 Dieck HA, Heck FR. J. Organomet. Chem.. 1975; 93: 259
  • 24 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett.. 1975; 16: 4467
  • 26 Casalnuovo AL, Calabrese JC, Milstein D. J. Am. Chem. Soc.. 1988; 110: 6738
  • 27 Trost BM, Van Vranken DL. Chem. Rev.. 1996; 96: 395
  • 28 Bartels B, Helmchen G. Chem. Commun. (Cambridge). 1999; 741
  • 30 Braun M, Meier T. Angew. Chem. Int. Ed.. 2006; 45: 6952
  • 31 Mohr JT, Stoltz BM. Chem.–Asian J.. 2007; 2: 1476
  • 32 Chi Y, Scroggins ST, Fréchet JMJ. J. Am. Chem. Soc.. 2008; 130: 6322
  • 33 Weaver JD, Recio III A, Grenning AJ, Tunge JA. Chem. Rev.. 2011; 111: 1846
  • 35 Carroll MP, Guiry PJ. Chem. Soc. Rev.. 2014; 43: 819
  • 37 Butt N, Yang G, Zhang W. Chem. Rec.. 2016; 16: 2687
  • 38 Grange RL, Clizbe EA, Evans PA. Synthesis. 2016; 48: 2911
  • 39 Helmchen G, Dahnz A, Dübon P, Schelwies M, Weihofen R. Chem. Commun. (Cambridge). 2007; 675
  • 40 Hartwig JF, Stanley LM. Acc. Chem. Res.. 2010; 43: 1461
  • 41 Liu W.-B, Xia J.-B, You S.-L. Top. Organomet. Chem.. 2011; 38: 155
  • 42 Helmchen G, Molecular Catalysts: Structure and Functional Design. Gade LH, Hofmann P. Wiley-VCH Weinheim, Germany 2014; 239
  • 44 Tang H, Huo X, Meng Q, Zhang W. Acta Chim. Sin. (Engl. Ed.). 2016; 74: 219
  • 46 Yang Z.-P, Jiang R, Zheng C, You S.-L. J. Am. Chem. Soc.. 2018; 140: 3114
  • 47 Kanayama T, Yoshida K, Miyabe H, Kimachi T, Takemoto Y. J. Org. Chem.. 2003; 68: 6197
  • 48 Kanayama T, Yoshida K, Miyabe H, Takemoto Y. Angew. Chem. Int. Ed.. 2003; 42: 2054
  • 49 Chen W, Hartwig JF. J. Am. Chem. Soc.. 2013; 135: 2068
  • 50 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science (Washington, D. C.). 2013; 340: 1065
  • 51 Næsborg L, Halskov KS, Tur F, Mønsted SMN, Jørgensen KA. Angew. Chem. Int. Ed.. 2015; 54: 10193
  • 52 Sandmeier T, Krautwald S, Zipfel H. F, Carreira EM. Angew. Chem. Int. Ed.. 2015; 54: 14363
  • 53 Jiang X, Beiger JJ, Hartwig JF. J. Am. Chem. Soc.. 2017; 139: 87
  • 54 Chen W, Hartwig JF. J. Am. Chem. Soc.. 2014; 136: 377
  • 55 Fu Z, Deng N, Su S.-N, Li H, Li R.-Z, Zhang X, Liu J, Niu D. Angew. Chem. Int. Ed.. 2018; 57: 15217
  • 56 Stork G, Burgstahler AW. J. Am. Chem. Soc.. 1955; 77: 5068
  • 57 Eschenmoser A, Ruzicka L, Jeger O, Arigoni D. Helv. Chim. Acta. 1955; 38: 1890
  • 58 Stadler PA, Eschenmoser A, Schinz H, Stork G. Helv. Chim. Acta. 1957; 40: 2191
  • 59 Eschenmoser A, Arigoni D. Helv. Chim. Acta. 2005; 88: 3011
  • 60 Schafroth MA, Sarlah D, Krautwald S, Carreira EM. J. Am. Chem. Soc.. 2012; 134: 20276
  • 61 Schafroth MA, Rummelt SM, Sarlah D, Carreira EM. Org. Lett.. 2017; 19: 3235
  • 62 Jeker OF, Kravina AG, Carreira EM. Angew. Chem. Int. Ed.. 2013; 52: 12166
  • 63 Hamilton JY, Rössler SL, Carreira EM. J. Am. Chem. Soc.. 2017; 139: 8082
  • 64 Rössler SL, Schreib BS, Ginterseder M, Hamilton JY, Carreira EM. Org. Lett.. 2017; 19: 5533
  • 65 Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett.. 1965; 6: 4387
  • 66 Trost BM, Strege PE. J. Am. Chem. Soc.. 1977; 99: 1649
  • 67 Sempere Y, Carreira EM. Angew. Chem. Int. Ed.. 2018; 57: 7654
  • 68 Ramulu BJ, Nagaraju A, Chowdhury S, Koley S, Singh MS. Adv. Synth. Catal.. 2015; 357: 530
  • 69 Huo X, He R, Zhang X, Zhang W. J. Am. Chem. Soc.. 2016; 138: 11093
  • 70 He R, Liu P, Huo X, Zhang W. Org. Lett.. 2017; 19: 5513
  • 71 Zhan M, Li R.-Z, Mou Z.-D, Cao C.-G, Liu J, Chen Y.-W, Niu D. ACS Catal.. 2016; 6: 3381
  • 72 Nájera C, Sansano JM. Curr. Org. Chem.. 2003; 7: 1105
  • 74 Husinec S, Savic V. Tetrahedron: Asymmetry. 2005; 16: 2047
  • 75 Nájera C, Sansano JM. Angew. Chem. Int. Ed.. 2005; 44: 6272
  • 76 Pandey G, Banerjee P, Gadre SR. Chem. Rev.. 2006; 106: 4484
  • 77 Adrio J, Carretero JC. Chem. Commun. (Cambridge). 2011; 47: 6784
  • 78 Nájera C, Sansano JM. Monatsh. Chem.. 2011; 142: 659
  • 79 Adrio J, Carretero JC. Chem. Commun. (Cambridge). 2014; 50: 12434
  • 80 Nájera C, Sansano JM. J. Organomet. Chem.. 2014; 771: 78
  • 81 Narayan R, Potowski M, Jia Z.-J, Antonchick AP, Waldmann H. Acc. Chem. Res.. 2014; 47: 1296
  • 82 Grigg R, Montgomery J, Somasunderam A. Tetrahedron. 1992; 48: 10431
  • 83 Huo X, He R, Fu J, Zhang J, Yang G, Zhang W. J. Am. Chem. Soc.. 2017; 139: 9819
  • 84 Trost BM, Machacek MR, Aponick A. Acc. Chem. Res.. 2006; 39: 747
  • 85 Behenna DC, Mohr JT, Sherden NH, Marinescu SC, Harned AM, Tani K, Seto M, Ma S, Novák Z, Krout MR, McFadden RM, Roizen JL, Enquist Jr. JA, White DE, Levine SR, Petrova KV, Iwashita A, Virgil SC, Stoltz BM. Chem.–Eur. J.. 2011; 17: 14199
  • 86 Sakaguchi K, Suzuki H, Ohfune Y. Chirality. 2001; 13: 357
  • 87 Sakaguchi K, Yamamoto M, Kawamoto T, Yamada T, Shinada T, Shimamoto K, Ohfune Y. Tetrahedron Lett.. 2004; 45: 5869
  • 88 Huo X, Zhang J, Fu J, He R, Zhang W. J. Am. Chem. Soc.. 2018; 140: 2080
  • 89 Wei L, Zhu Q, Xu S.-M, Chang X, Wang C.-J. J. Am. Chem. Soc.. 2018; 140: 1508
  • 90 Zhang J, Huo X, Li B, Chen Z, Zou Y, Sun Z, Zhang W. Adv. Synth. Catal.. 2019; 361: 1130
  • 91 Jiang X, Boehm P, Hartwig JF. J. Am. Chem. Soc.. 2018; 140: 1239