Fernández, E.: 2020 Science of Synthesis, 2019/6: Advances in Organoboron Chemistry towards Organic Synthesis DOI: 10.1055/sos-SD-230-00207
Advances in Organoboron Chemistry towards Organic Synthesis

12 Reactions through Radical Boryl Moieties

More Information

Book

Editor: Fernández, E.

Authors: Aggarwal, V. K.; Ahmed, E.-A. M. A. ; Aiken, S. G.; Bateman, J. M.; Boldrini, C.; Bose, S. K. ; Carbó, J. J. ; Cho, H. Y.; Clark, T. B. ; Fernández, E.; Fu, Y. ; Geetharani, K. ; Gong, T.-J. ; Ito, H. ; Kitanosono, T.; Kobayashi, S.; Kubota, K. ; Maseras, F. ; Ohmiya, H. ; Pineschi, M.; Ping, Y.; Sawamura, M. ; Wang, J. ; Wang, Y.-F.; Wu, C.; Xu, L. ; Yoshida, H. ; Zhang, F.-L.

Title: Advances in Organoboron Chemistry towards Organic Synthesis

Print ISBN: 9783132429710; Online ISBN: 9783132429758; Book DOI: 10.1055/b-006-164898

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 

Abstract

Recent synthetic applications of boryl radical moieties, including reduction reactions and the synthesis of organoboron compounds, are reviewed in this chapter. A specific focus is given to discussion of the methodology, applicability, and experimental details.

 
  • 1 G. E. Ryschkewitsch,, V. R. Miller,. J. Am. Chem. Soc.. 1973; 95: 2836
  • 2 J. A. Baban,, B. P. Roberts,. J. Chem. Soc., Chem. Commun.. 1983; 1224
  • 5 S.-H. Ueng,, M. M. Brahmi,, Derat,, L. Fensterbank,, E. Lacôte,, M. Malacria,, D. P. Curran,. J. Am. Chem. Soc.. 2008; 130: 10082
  • 6 S.-H. Ueng,, A. Solovyev,, X. Yuan,, S. J. Geib,, L. Fensterbank,, E. Lacôte,, M. Malacria,, M. Newcomb,, J. C. Walton,, D. P. Curran,. J. Am. Chem. Soc.. 2009; 131: 11256
  • 7 J. C. Walton,, M. M. Brahmi,, L. Fensterbank,, E. Lacôte,, M. Malacria,, Q. Chu,, S.-H. Ueng,, A. Solovyev,, D. P. Curran,. J. Am. Chem. Soc.. 2010; 132: 2350
  • 8 F. Mo,, Y. Jiang,, D. Qiu,, Y. Zhang,, J. Wang,. Angew. Chem. Int. Ed.. 2010; 49: 1846
  • 9 G. Wang,, H. Zhang,, J. Zhao,, W. Li,, J. Cao,, C. Zhu,, S. Li,. Angew. Chem. Int. Ed.. 2016; 55: 5985
  • 10 G. Yan,, D. Huang,, X. Wu,. Adv. Synth. Catal.. 2018; 360: 1040
  • 11 S.-H. Ueng,, L. Fensterbank,, E. Lacôte,, M. Malacria,, D. P. Curran,. Org. Lett.. 2010; 12: 3002
  • 12 X. Pan,, E. Lacôte,, J. Lalevée,, D. P. Curran,. J. Am. Chem. Soc.. 2012; 134: 5669
  • 13 F. Dénès,, M. Pichowicz,, G. Povie,, P. Renaud,. Chem. Rev.. 2014; 114: 2587
  • 14 M. Newcomb,, S.-Y. Choi,, J. H. Horner,. J. Org. Chem.. 1999; 64: 1225
  • 15 J. A. Franz,, B. A. Bushaw,, M. S. Alnajjar,. J. Am. Chem. Soc.. 1989; 111: 268
  • 16 T. Kawamoto,, S. J. Geib,, D. P. Curran,. J. Am. Chem. Soc.. 2015; 137: 8617
  • 17 Y.-J. Yu,, F.-L. Zhang,, J. Cheng,, J.-H. Hei,, W.-T. Deng,, Y.-F. Wang,. Org. Lett.. 2018; 20: 24
  • 18 G. Wang,, J. Cao,, L. Gao,, W. Chen,, W. Huang,, X. Cheng,, S. Li,. J. Am. Chem. Soc.. 2017; 139: 3904
  • 19 S.-C. Ren,, F.-L. Zhang,, J. Qi,, Y.-S. Huang,, A.-Q. Xu,, H.-Y. Yan,, Y.-F. Wang,. J. Am. Chem. Soc.. 2017; 139: 6050
  • 20 T. Watanabe,, D. Hirose,, D. P. Curran,, T. Taniguchi,. Chem.–Eur. J.. 2017; 23: 5404
  • 21 J. Qi,, F.-L. Zhang,, Y.-S. Huang,, A.-Q. Xu,, S.-C. Ren,, Z.-Y. Yi,, Y.-F. Wang,. Org. Lett.. 2018; 20: 2360
  • 22 N. S. Gunasekara,, S. Noble,, P. Benfield,. Drugs. 1998; 55: 85
  • 23 J.-K. Jin,, F.-L. Zhang,, Q. Zhao,, J.-A. Lu,, Y.-F. Wang,. Org. Lett.. 2018; 20: 7558
  • 24 M. Shimoi,, K. Maeda,, S. J. Geib,, D. P. Curran,, T. Taniguchi,. Angew. Chem. Int. Ed.. 2019; 58: 6357
  • 25 N. Zhou,, X.-A. Yuan,, Y. Zhao,, J. Xie,, C. Zhu,. Angew. Chem. Int. Ed.. 2018; 57: 3990
  • 26 M. Shimoi,, T. Watanabe,, K. Maeda,, D. P. Curran,, T. Taniguchi,. Angew. Chem. Int. Ed.. 2018; 57: 9485
  • 27 S.-C. Ren,, F.-L. Zhang,, A.-Q. Xu,, Y. Yang,, M. Zheng,, X. Zhou,, Y. Fu,, Y.-F. Wang,. Nat. Commun.. 2019; 9: 1934
  • 28 J. Wu,, L. He,, A. Noble,, V. K. Aggarwal,. J. Am. Chem. Soc.. 2018; 140: 10700
  • 29 J. Hu,, G. Wang,, S. Li,, Z. Shi,. Angew. Chem. Int. Ed.. 2018; 57: 15227
  • 30 L. Zhang,, L. Jiao,. J. Am. Chem. Soc.. 2017; 139: 607
  • 31 Y. Cheng,, C. Mück-Lichtenfeld,, A. Studer,. Angew. Chem. Int. Ed.. 2018; 57: 16832
  • 32 L. Candish,, M. Teders,, F. Glorius,. J. Am. Chem. Soc.. 2017; 139: 7440
  • 33 A. Fawcett,, J. Pradeilles,, Y. Wang,, T. Mutsuga,, E. L. Myers,, V. K. Aggarwal,. Science (Washington, D. C.). 2017; 357: 283
  • 34 P.-F. Dai,, X.-S. Ning,, H. Wang,, X.-C. Cui,, J. Liu,, J.-P. Qu,, Y.-B. Kang,. Angew. Chem. Int. Ed.. 2019; 58: 5392
  • 35 Y. Cheng,, C. Mück-Lichtenfeld,, A. Studer,. J. Am. Chem. Soc.. 2018; 140: 6221