Fernández, E.: 2020 Science of Synthesis, 2019/6: Advances in Organoboron Chemistry towards Organic Synthesis DOI: 10.1055/sos-SD-230-00161
Advances in Organoboron Chemistry towards Organic Synthesis

9 Decarbonylative/Decarboxylative Borylation

More Information

Book

Editor: Fernández, E.

Authors: Aggarwal, V. K.; Ahmed, E.-A. M. A. ; Aiken, S. G.; Bateman, J. M.; Boldrini, C.; Bose, S. K. ; Carbó, J. J. ; Cho, H. Y.; Clark, T. B. ; Fernández, E.; Fu, Y. ; Geetharani, K. ; Gong, T.-J. ; Ito, H. ; Kitanosono, T.; Kobayashi, S.; Kubota, K. ; Maseras, F. ; Ohmiya, H. ; Pineschi, M.; Ping, Y.; Sawamura, M. ; Wang, J. ; Wang, Y.-F.; Wu, C.; Xu, L. ; Yoshida, H. ; Zhang, F.-L.

Title: Advances in Organoboron Chemistry towards Organic Synthesis

Print ISBN: 9783132429710; Online ISBN: 9783132429758; Book DOI: 10.1055/b-006-164898

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 

Abstract

Organoboron species are versatile building blocks and have been widely used in the synthesis of bioactive molecules, natural products, and organic materials. Accordingly, approaches to access such compounds have been widely explored. Carboxylic acids, which are ubiquitous and abundant organic feedstocks, can be transformed into their borylated counterparts via several different catalytic or stoichiometric approaches. In this review, decarboxylative borylation reactions, which form a carbon–boron bond with elimination of carbon dioxide, are detailed in terms of reaction conditions, substrate scope, and experimental procedures.

 
  • 1 J. W. B. Fyfe,, A. J. B. Watson,. Chem. 2017; 3: 31
  • 2 E. C. Neeve,, S. J. Geier,, I. A. I. Mkhalid,, S. A. Westcott,, T. B. Marder,. Chem. Rev.. 2016; 116: 9091
  • 3 V. D. Nguyen,, V. T. Nguyen,, S. Jin,, H. T. Dang,, O. V. Larionov,. Tetrahedron. 2019; 75: 584
  • 4 G. Yan,, D. Huang,, X. Wu,. Adv. Synth. Catal.. 2018; 360: 1040
  • 5 L. Xu,, G. Wang,, S. Zhang,, H. Wang,, L. Wang,, L. Liu,, J. Jiao,, P. Li,. Tetrahedron. 2017; 73: 7123
  • 6 Y. Wei,, P. Hu,, M. Zhang,, W. Su,. Chem. Rev.. 2017; 117: 8864
  • 7 T. Patra,, D. Maiti,. Chem.–Eur. J.. 2017; 23: 7382
  • 8 J. Schwarz,, B. König,. Green Chem.. 2018; 20: 323
  • 9 P. Bharathi,, H. Zhao,, S. Thayumanavan,. Org. Lett.. 2001; 3: 1961
  • 10 K. P. Melnykov,, D. S. Granat,, D. M. Volochnyuk,, S. V. Ryabukhin,, O. O. Grygorenko,. Synthesis. 2018; 50: 4949
  • 11 L. Guo,, M. Rueping,. Acc. Chem. Res.. 2018; 51: 1185
  • 12 L. Guo,, M. Rueping,. Chem.–Eur. J.. 2016; 22: 16787
  • 13 X. Pu,, J. Hu,, Y. Zhao,, Z. Shi,. ACS Catal.. 2016; 6: 6692
  • 14 J. Hu,, Y. Zhao,, J. Liu,, Y. Zhang,, Z. Shi,. Angew. Chem. Int. Ed.. 2016; 55: 8718
  • 15 S.-C. Lee,, L. Guo,, H. Yue,, H.-H. Liao,, M. Rueping,. Synlett. 2017; 28: 2594
  • 16 H. Ochiai,, Y. Uetake,, T. Niwa,, T. Hosoya,. Angew. Chem. Int. Ed.. 2017; 56: 2482
  • 17 T. Niwa,, H. Ochiai,, M. Isoda,, T. Hosoya,. Chem. Lett.. 2017; 46: 1315
  • 18 C. A. Malapit,, N. Ichiishi,, M. S. Sanford,. Org. Lett.. 2017; 19: 4142
  • 19 Z. Wang,, X. Wang,, Y. Nishihara,. Chem. Commun. (Cambridge). 2018; 54: 13969
  • 20 C. Liu,, C.-L. Ji,, X. Hong,, M. Szostak,. Angew. Chem. Int. Ed.. 2018; 57: 16721
  • 22 K. Okada,, K. Okamoto,, M. Oda,. J. Am. Chem. Soc.. 1988; 110: 8736
  • 23 C. Li,, J. Wang,, L. M. Barton,, S. Yu,, M. Tian,, D. S. Peters,, M. Kumar,, A. W. Yu,, K. A. Johnson,, A. K. Chatterjee,, M. Yan,, P. S. Baran,. Science (Washington, D. C.). 2017; 356: 1045
  • 24 J. Wang,, M. Shang,, H. Lundberg,, K. S. Feu,, S. J. Hecker,, T. Qin,, D. G. Blackmond,, P. S. Baran,. ACS Catal.. 2018; 8: 9537
  • 25 D. Hu,, L. Wang,, P. Li,. Org. Lett.. 2017; 19: 2770
  • 26 A. Fawcett,, J. Pradeilles,, Y. Wang,, T. Mutsuga,, E. L. Myers,, V. K. Aggarwal,. Science (Washington, D. C.). 2017; 357: 283
  • 27 L. Candish,, M. Teders,, F. Glorius,. J. Am. Chem. Soc.. 2017; 139: 7440
  • 28 W.-M. Cheng,, R. Shang,, B. Zhao,, W.-L. Xing,, Y. Fu,. Org. Lett.. 2017; 19: 4291
  • 29 Q. Feng,, K. Yang,, Q. Song,. Chem. Commun. (Cambridge). 2015; 51: 15394
  • 30 F. M. Irudayanathan,, G. C. E. Raja,, H.-S. Kim,, K. Na,, S. Lee,. Bull. Korean Chem. Soc.. 2016; 37: 463
  • 31 Y.-W. Zhao,, Q. Feng,, Q.-L. Song,. Chin. Chem. Lett.. 2016; 27: 571