Jamison, T. F. et al.: 2018 Science of Synthesis, 2018/5: Flow Chemistry in Organic Synthesis DOI: 10.1055/sos-SD-228-00230
Flow Chemistry in Organic Synthesis

12 Pushing the Limits of Solid-Phase Peptide Synthesis with Continuous Flow

More Information

Book

Editors: Jamison, T. F.; Koch, G.

Authors: Beeler, A. B.; Beingessner, R. L.; Bottecchia, C.; Browne, D. L.; Coley, C. W.; Ferguson, S.; Folgueiras-Amador, A. A.; Gilmore, K.; Hicklin, R. W.; Imbrogno, J.; Itsuno, S.; Jamison, T. F.; Jensen, K. F.; Kelly, L. P.; Kerr, M. S.; Kiesman, W. F.; Kim, H.; Kwok, D.-I. A.; Ley, S. V.; Longstreet, A. R.; May, S. A. ; McTeague, T. A.; Mijalis, A. J.; Mo, Y.; Moon, S.; Myerson, A.; Noël, T.; O’Brien, A. G.; O’Brien, M.; O’Mahony, M.; Opalka, S. M.; Pentelute, B. L.; Polyzos, A. ; Schepartz, A.; Seeberger, P. H.; Seo, H.; Steinauer, A.; Stelzer, T.; Stephenson, C. R. J.; Strom, A. E.; Styduhar, E. D.; Sun, A. C.; Telmesani, R.; Thomas, D. A.; Tran, T. H.; Ullah, M. S.; Wicker, A. C.; Wirth, T.; Yoshida, J.

Title: Flow Chemistry in Organic Synthesis

Print ISBN: 9783132423312; Online ISBN: 9783132423350; Book DOI: 10.1055/b-006-161272

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Since its invention by Bruce Merrifield, solid-phase peptide synthesis has conventionally been performed in batch reactors. With systems created by Atherton, Dryland, and Sheppard in the 1980s, flow-chemistry techniques began to be applied to enhance solid-phase peptide synthesis, improving mixing and enabling time-resolved monitoring of Fmoc removal. Here, we review the history of flow-chemical techniques for solid-phase peptide synthesis, advances in solid supports that make flow chemistry on the solid phase feasible, the rationale behind using flow chemistry for amino acid activation, and other techniques for synthesizing peptides in flow, including the use of solid-supported coupling reagents and soluble macromolecular supports. Advantages of flow-chemistry techniques for both solid- and liquid-phase peptide synthesis include precise control of reagent heating and chiral integrity of incorporated amino acids, improvements in amino acid coupling times, and in-process detection of problematic peptide sequences.

 
  • 1 Barany G, Merrifield RB, In The Peptides: Analysis, Synthesis, Biology. Gross E, Meienhofer J. Academic; New York 1980. 2.
  • 2 Kent SBH. Annu. Rev. Biochem 1988; 57: 957
  • 3 Bayer E, Jung G, Halász I, Sebestian I. Tetrahedron Lett 1970; 11: 4503
  • 4 Scott RPW, Chan KK, Kucera P, Zolty S. J. Chromatogr. Sci 1971; 9: 577
  • 5 Lukas TJ, Prystowsky MB, Erickson BW. Proc. Natl. Acad. Sci. U. S. A 1981; 78: 2791
  • 6 Dryland A, Sheppard RC. J. Chem. Soc., Perkin Trans. 1 1986; 125
  • 7 Sarin VK, Kent SBH, Merrifield RB. J. Am. Chem. Soc 1980; 102: 5463
  • 8 Atherton E, Brown E, Sheppard RC, Rosevear A. J. Chem. Soc., Chem. Commun 1981; 1151
  • 9 Atherton E, Sheppard RC. J. Chem. Soc., Chem. Commun 1985; 165
  • 10 Dryland A, Sheppard RC. Tetrahedron 1988; 44: 859
  • 11 Otteson KM, Kates SA, In Houben–Weyl: Synthesis of Peptides and Peptidomimetics. Goodman M, Felix A, Moroder L, Toniolo C. Thieme; Stuttgart 2002. E 22d.
  • 12 Frank R, Döring R. Tetrahedron 1988; 44: 6031
  • 13 Mutulis F, Tysk M, Mutule I, Wikberg JES. J. Comb. Chem 2003; 5: 1
  • 14 Rapp W, Bayer E, In Peptides 1992: Proceedings of the Twenty-Second European Peptide Symposium. Schneider CH, Eberle AN. Springer; Leiden, The Netherlands 1993
  • 15 Mándity IM, Olasz B, Ötvös SB, Fülöp F. ChemSusChem 2014; 7: 3172
  • 16 Mándity IM, Ötvös SB, Szőlősi G, Fülöp F. Chem. Rec 2016; 16: 1018
  • 17 Mijalis AJ, Thomas III DA, Simon MD, Adamo A, Beaumont R, Jensen KF, Pentelute BL. Nat. Chem. Biol 2017; 13: 464
  • 18 Baxendale IR, Ley SV, Smith CD, Tranmer GK. Chem. Commun. (Cambridge) 2006; 4835
  • 19 So S, Peeva LG, Tate EW, Leatherbarrow RJ, Livingston AG. Chem. Commun. (Cambridge) 2010; 46: 2808
  • 20 Hyde C, Johnson T, Sheppard RC. J. Chem. Soc., Chem. Commun 1992; 1573
  • 21 Yu HM, Chen ST, Wang KT. J. Org. Chem 1992; 57: 4781
  • 22 Erdélyi M, Gogoll A. Synthesis 2002; 1592
  • 23 Collins JM, Porter KA, Singh SK, Vanier GS. Org. Lett 2014; 16: 940
  • 24 Palasek SA, Cox ZJ, Collins JM. J. Pept. Sci 2007; 13: 143
  • 25 Carpino LA, Chao HG, Beyermann M, Bienert M. J. Org. Chem 1991; 56: 2635
  • 26 Jones JH, Witty MJ. J. Chem. Soc., Chem. Commun 1977; 281
  • 27 Carpino LA, El-Faham A, Albericio F. Tetrahedron Lett 1994; 35: 2279
  • 28 Griehl C, Kolbe A, Merkel S. J. Chem. Soc., Perkin Trans. 2 1996; 2525
  • 29 Goodman M, Levine L. J. Am. Chem. Soc 1964; 86: 2918
  • 30 Kemp DS, In The Peptides: Analysis, Synthesis, Biology. Gross E, Meienhofer J. Academic; New York 1979. 1.
  • 31 Yoshida J.-I, Takahashi Y, Nagaki A. Chem. Commun. (Cambridge) 2013; 49: 9896
  • 32 Petersson EJ, Schepartz A. J. Am. Chem. Soc 2008; 130: 821
  • 33 Chen FMF, Lee YC, Benoiton NL. Int. J. Pept. Protein Res 1991; 38: 97
  • 34 Falb E, Yechezkel T, Salitra Y, Gilon C. J. Pept. Res 1999; 53: 507
  • 35 Fuse S, Mifune Y, Takahashi T. Angew. Chem. Int. Ed 2014; 53: 851
  • 36 Pentelute Group, unpublished results.
  • 37 Lauer JL, Fields CG, Fields GB. Lett. Pept. Sci 1995; 1: 197
  • 38 Karlström A, Undén A. Chem. Biol. Drug Des 1996; 48: 305
  • 39 Behrendt R, Huber S, Martí R, White P. J. Pept. Sci 2015; 21: 680
  • 40 Packman LC. Tetrahedron Lett 1995; 36: 7523
  • 41 Simon MD, Heider PL, Adamo A, Vinogradov AA, Mong SK, Li X, Berger T, Policarpo RL, Zhang C, Zou Y, Liao X, Spokoyny AM, Jensen KF, Pentelute BL. ChemBioChem 2014; 15: 713