Jamison, T. F. et al.: 2018 Science of Synthesis, 2018/5: Flow Chemistry in Organic Synthesis DOI: 10.1055/sos-SD-228-00200
Flow Chemistry in Organic Synthesis

10 Intermolecular Transition-Metal-Catalyzed C—C Coupling Reactions in Continuous Flow

Weitere Informationen

Buch

Herausgeber: Jamison, T. F.; Koch, G.

Autoren: Beeler, A. B.; Beingessner, R. L.; Bottecchia, C.; Browne, D. L.; Coley, C. W.; Ferguson, S.; Folgueiras-Amador, A. A.; Gilmore, K.; Hicklin, R. W.; Imbrogno, J.; Itsuno, S.; Jamison, T. F.; Jensen, K. F.; Kelly, L. P.; Kerr, M. S.; Kiesman, W. F.; Kim, H.; Kwok, D.-I. A.; Ley, S. V.; Longstreet, A. R.; May, S. A.; McTeague, T. A.; Mijalis, A. J.; Mo, Y.; Moon, S.; Myerson, A.; Noël, T.; O’Brien, A. G.; O’Brien, M.; O’Mahony, M.; Opalka, S. M.; Pentelute, B. L.; Polyzos, A.; Schepartz, A.; Seeberger, P. H.; Seo, H.; Steinauer, A.; Stelzer, T.; Stephenson, C. R. J.; Strom, A. E.; Styduhar, E. D.; Sun, A. C.; Telmesani, R.; Thomas, D. A.; Tran, T. H.; Ullah, M. S.; Wicker, A. C.; Wirth, T.; Yoshida, J.

Titel: Flow Chemistry in Organic Synthesis

Print ISBN: 9783132423312; Online ISBN: 9783132423350; Buch-DOI: 10.1055/b-006-161272

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

This chapter provides an up-to-date collection of prominent examples of intermolecular transition-metal-catalyzed C–C coupling reactions performed in continuous-flow systems. The advantages offered by flow technology for the implementation of traditional cross-coupling methods are discussed. Moreover, recent examples of the successful application of flow reactors for C–H functionalization strategies (including C–H activation and dual photoredox transition-metal catalysis) are reviewed.

 
  • 1 Noël T, Buchwald SL. Chem. Soc. Rev. 2011; 40: 5010
  • 2 Metal-Catalyzed Cross-Coupling Reactions. de Meijere A, Diederich F. Wiley-VCH; Weinheim, Germany 2004
  • 3 Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 5 Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford University Press; Oxford, UK 1998
  • 6 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
  • 7 Arndtsen BA, Bergman RG, Mobley TA, Peterson TH. Acc. Chem. Res. 1995; 28: 154
  • 8 Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
  • 9 Labinger JA, Bercaw JE. Nature (London) 2002; 417: 507
  • 10 Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q. ChemSusChem 2013; 6: 746
  • 11 Newman SG, Jensen KF. Green Chem. 2013; 15: 1456
  • 12 Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
  • 13 Jähnisch K, Hessel V, Löwe H, Baerns M. Angew. Chem. Int. Ed. 2004; 43: 406
  • 14 Gutmann B, Kappe CO. Chim. Oggi 2015; 33: 18
  • 15 Teoh SK, Rathi C, Sharratt P. Org. Process Res. Dev. 2016; 20: 414
  • 16 Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T. Chem. Soc. Rev. 2016; 45: 83
  • 17 Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
  • 18 Britton J, Raston CL. Chem. Soc. Rev. 2017; 46: 1250
  • 19 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 20 Noël T, Hessel V, In: New Trends in Cross-Coupling: Theory and Applications Colacot TJ. Royal Society of Chemistry Cambridge, UK 2015; 610-644
  • 21 Webb D, Jamison TF. Chem. Sci. 2010; 1: 675
  • 22 Shu W, Pellegatti L, Oberli MA, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 10665
  • 23 Nagaki A, Moriwaki Y, Yoshida J.-i. Chem. Commun. (Cambridge) 2012; 48: 11211
  • 24 Glasnov TN, Kappe CO. Adv. Synth. Catal. 2010; 352: 3089
  • 25 Dalla-Vechia L, Reichart B, Glasnov T, Miranda LSM, Kappe CO, de Souza ROMA. Org. Biomol. Chem. 2013; 11: 6806
  • 26 Noël T, Kuhn S, Musacchio AJ, Jensen KF, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 5943
  • 27 Noël T, Musacchio AJ. Org. Lett. 2011; 13: 5180
  • 28 Theberge AB, Whyte G, Frenzel M, Fidalgo LM, Wootton RCR, Huck WTS. Chem. Commun. (Cambridge) 2009; 6225
  • 29 Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
  • 30 King AO, Okukado N, Negishi E.-i. J. Chem. Soc., Chem. Commun. 1977; 683
  • 31 Alonso N, Miller LZ, Muñoz JdeM, Alcázar J, McQuade DT. Adv. Synth. Catal. 2014; 356: 3737
  • 32 Berton M, Huck L, Alcázar J. Nature Protoc. 2018; 13: 324
  • 33 Roesner S, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 10463
  • 34 Heck RF, Nolley JP. J. Org. Chem. 1972; 37: 2320
  • 35 Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
  • 36 Hartman RL, Naber JR, Buchwald SL, Jensen KF. Angew. Chem. Int. Ed. 2010; 49: 899
  • 37 McMullen JP, Stone MT, Buchwald SL, Jensen KF. Angew. Chem. Int. Ed. 2010; 49: 7076
  • 38 Glasnov TN, Findenig S, Kappe CO. Chem.–Eur. J. 2009; 15: 1001
  • 39 Park CP, Kim D.-P. J. Am. Chem. Soc. 2010; 132: 10102
  • 40 Beller M, Wu X.-F. Transition Metal Catalyzed Carbonylation Reactions. Springer; Heidelberg 2013: 133-146
  • 41 Miller PW, Long NJ, de Mello AJ, Vilar R, Passchier J, Gee A. Chem. Commun. (Cambridge) 2006; 546
  • 42 Miller PW, Long NJ, de Mello AJ, Vilar R, Audrain H, Bender D, Passchier J, Gee A. Angew. Chem. Int. Ed. 2007; 46: 2875
  • 43 Miller PW, Long NJ, Vilar R, Gee AD. Angew. Chem. Int. Ed. 2008; 47: 8998
  • 44 Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I. Chem. Commun. (Cambridge) 2006; 2236
  • 45 He J, Wasa M, Chan KSL, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
  • 46 Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
  • 47 Laudadio G, Noël T, In: Strategies for Palladium-Catalyzed Non-Directed and Directed C-H Bond Functionalization Kapdi AR, Maiti D. Elsevier Amsterdam 2017; 275-288
  • 48 Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
  • 49 Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 50 Davies HML, Morton D. J. Org. Chem. 2016; 81: 343
  • 51 Shilov AE, Shulʼpin GB. Chem. Rev. 1997; 97: 2879
  • 52 Petersen TP, Polyzos A, OʼBrien M, Ulven T, Baxendale IR, Ley SV. ChemSusChem 2012; 5: 274
  • 53 Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
  • 54 Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
  • 55 Gemoets HPL, Hessel V, Noël T. Org. Lett. 2014; 16: 5800
  • 56 Erdmann N, Su Y, Bosmans B, Hessel V, Noël T. Org. Process Res. Dev. 2016; 20: 831
  • 57 Fujiwara Y, Moritani I, Danno S, Asano R, Teranishi S. J. Am. Chem. Soc. 1969; 91: 7166
  • 58 Ferreira EM, Zhang H, Stoltz BM, In: The Mizoroki-Heck Reaction Oestreich M. Wiley Chichester, UK 2009; 345-382
  • 59 Ferlin F, Santoro S, Ackermann L, Vaccaro L. Green Chem. 2017; 19: 2510
  • 60 Zakrzewski J, Smalley AP, Kabeshov MA, Gaunt MJ, Lapkin AA. Angew. Chem. Int. Ed. 2016; 55: 8878
  • 61 Wang H, Pesciaioli F, Oliveira JCA, Warratz S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 15063
  • 62 Gemoets HPL, Laudadio G, Verstraete K, Hessel V, Noël T. Angew. Chem. Int. Ed. 2017; 56: 7161
  • 63 Laudadio G, Gemoets HPL, Hessel V, Noël T. J. Org. Chem. 2017; 82: 11735
  • 64 Phipps RJ, Gaunt MJ. Science (Washington, D. C.) 2009; 323: 1593
  • 65 Prier CK, Rankic DA, MacMillan DWC. Chem. Rev. 2013; 113: 5322
  • 66 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 67 Staveness D, Bosque I, Stephenson CRJ. Acc. Chem. Res. 2016; 49: 2295
  • 68 Noël T. J. Flow Chem. 2017; 7: 87
  • 69 Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
  • 70 Knowles JP, Elliott LD, Booker-Milburn KI. Beilstein J. Org. Chem. 2012; 8: 2025
  • 71 Hopkinson MN, Gómez-Suárez A, Teders M, Sahoo B, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 4361
  • 72 Fabry DC, Rueping M. Acc. Chem. Res. 2016; 49: 1969
  • 73 Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
  • 74 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
  • 75 Welin ER, Le C, Arias-Rotondo DM, McCusker JK, MacMillan DWC. Science (Washington, D. C.) 2017; 355: 380
  • 76 Tlahuext-Aca A, Hopkinson MN, Sahoo B, Glorius F. Chem. Sci. 2016; 7: 89
  • 77 Fabry DC, Zoller J, Raja S, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 10228
  • 78 Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
  • 79 Levin MD, Kim S, Toste FD. ACS Cent. Sci. 2016; 2: 293
  • 80 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC. Science (Washington, D. C.) 2014; 345: 437
  • 81 Tellis JC, Primer DN, Molander GA. Science (Washington, D. C.) 2014; 345: 433
  • 82 Lima F, Kabeshov MA, Tran DN, Battilocchio C, Sedelmeier J, Sedelmeier G, Schenkel B, Ley SV. Angew. Chem. Int. Ed. 2016; 55: 14085
  • 83 Palaychuk N, DeLano TJ, Boyd MJ, Green J, Bandarage UK. Org. Lett. 2016; 18: 6180
  • 84 Primer DN, Karakaya I, Tellis JC, Molander GA. J. Am. Chem. Soc. 2015; 137: 2195
  • 85 Sharma UK, Gemoets HPL, Schröder F, Noël T, Van der Eycken EV. ACS Catal. 2017; 7: 3818