Jamison, T. F. et al.: 2018 Science of Synthesis, 2018/5: Flow Chemistry in Organic Synthesis DOI: 10.1055/sos-SD-228-00173
Flow Chemistry in Organic Synthesis

8 Gaseous Reagents in Continuous-Flow Synthesis

More Information

Book

Editors: Jamison, T. F.; Koch, G.

Authors: Beeler, A. B.; Beingessner, R. L.; Bottecchia, C.; Browne, D. L.; Coley, C. W.; Ferguson, S.; Folgueiras-Amador, A. A.; Gilmore, K.; Hicklin, R. W.; Imbrogno, J.; Itsuno, S.; Jamison, T. F.; Jensen, K. F.; Kelly, L. P.; Kerr, M. S.; Kiesman, W. F.; Kim, H.; Kwok, D.-I. A.; Ley, S. V.; Longstreet, A. R.; May, S. A.; McTeague, T. A.; Mijalis, A. J.; Mo, Y.; Moon, S.; Myerson, A.; Noël, T.; O’Brien, A. G.; O’Brien, M.; O’Mahony, M.; Opalka, S. M.; Pentelute, B. L.; Polyzos, A.; Schepartz, A.; Seeberger, P. H.; Seo, H.; Steinauer, A.; Stelzer, T.; Stephenson, C. R. J.; Strom, A. E.; Styduhar, E. D.; Sun, A. C.; Telmesani, R.; Thomas, D. A.; Tran, T. H.; Ullah, M. S.; Wicker, A. C.; Wirth, T.; Yoshida, J.

Title: Flow Chemistry in Organic Synthesis

Print ISBN: 9783132423312; Online ISBN: 9783132423350; Book DOI: 10.1055/b-006-161272

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Although reactive gases facilitate a wide range of important synthetic transformations, their use is often not straightforward. Significant safety issues arise from the highly mobile nature of gases, both in terms of the rapidity with which they can spread throughout the laboratory and also because of the frequent need to use pressurized containment. Additionally, as surface-area-to-volume ratios tend to decrease as reactor dimensions are increased, gas–liquid transformations carried out in batch mode are often accompanied by scale-dependent performance. This chapter highlights some of the benefits that continuous flow chemistry can bring to gas–liquid synthetic chemistry. A number of flow chemical reactor systems are described, including microfluidic devices which enhance the mechanical mixing of gas and liquid phases, as well as systems based on the use of gas-permeable membrane materials.

 
  • 1 Lummiss JAM, Morse PD, Beingessner RL, Jamison TF. Chem. Rec. 2017; 17: 667
  • 2 Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV. Chem. Soc. Rev. 2016; 45: 4892
  • 3 Pastre JC, Browne DL, Ley SV. Chem. Soc. Rev. 2013; 42: 8849
  • 4 Ley SV. Chem. Rec. 2012; 12: 378
  • 5 Yoshida J.-i. Chem. Rec. 2010; 10: 332
  • 6 McQuade DT, Seeberger PH. J. Org. Chem. 2013; 78: 6384
  • 7 Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T. Chem. Soc. Rev. 2016; 45: 83
  • 8 Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q. ChemSusChem 2013; 6: 746
  • 9 Amii H, Nagaki A, Yoshida J.-i. Beilstein J. Org. Chem. 2013; 9: 2793
  • 10 Knowles JP, Elliott LD, Booker-Milburn KI. Beilstein J. Org. Chem. 2012; 8: 2025
  • 11 Müller STR, Wirth T. ChemSusChem 2015; 8: 245
  • 12 Newman SG, Jensen KF. Green Chem. 2013; 15: 1456
  • 13 Webb D, Jamison TF. Chem. Sci. 2010; 1: 675
  • 14 Wiles C, Watts P. Chem. Commun. (Cambridge) 2011; 47: 6512
  • 15 Wegner J, Ceylan S, Kirschning A. Adv. Synth. Catal. 2012; 354: 17
  • 16 Baumann M, Baxendale IR. Beilstein J. Org. Chem. 2015; 11: 1194
  • 17 Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
  • 18 Fukuyama T, Totoki T, Ryu I. Green Chem. 2014; 16: 2042
  • 19 Raub JA, Mathieu-Nolf M, Hampson NB, Thom SR. Toxicology 2000; 145: 1
  • 20 Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I. Chem. Commun. (Cambridge) 2006; 2236
  • 21 Fukuyama T, Rahman MT, Kamata N, Ryu I. Beilstein J. Org. Chem. 2009; 5: 34
  • 22 Günther A, Jensen KF. Lab Chip 2006; 6: 1487
  • 23 Hessel V, Ehrfeld W, Herweck T, Haverkamp V, Löwe H, Schiewe J, Wille C, Kern T, Lutz N. Proceedings of the Fourth International Conference on Microreaction Technology. Atlanta, USA 2000: 174-186
  • 24 Ziegenbalg D, Löb P, Al-Rawashdeh Mm, Kralisch D, Hessel V, Schönfeld F. Chem. Eng. Sci. 2010; 65: 3557
  • 25 Zanfir M, Gavriilidis A, Wille C, Hessel V. Ind. Eng. Chem. Res. 2005; 44: 1742
  • 26 Yeong KK, Gavriilidis A, Zapf R, Hessel V. Catal. Today 2003; 81: 641
  • 27 Jähnisch K, Baerns M, Hessel V, Ehrfeld W, Haverkamp V, Löwe H, Wille C, Guber A. J. Fluorine Chem. 2000; 105: 117
  • 28 Chambers RD, Sandford G, Trmcic J, Okazoe T. Org. Process Res. Dev. 2008; 12: 339
  • 29 Chambers RD, Fox MA, Sandford G, Trmcic J, Goeta A. J. Fluorine Chem. 2007; 128: 29
  • 30 Chambers RD, Fox MA, Holling D, Nakano T, Okazoe T, Sandford G. Lab Chip 2005; 5: 191
  • 31 Chambers RD, Fox MA, Sandford G. Lab Chip 2005; 5: 1132
  • 32 Wada Y, Schmidt MA, Jensen KF. Ind. Eng. Chem. Res. 2006; 45: 8036
  • 33 Hübner S, Bentrup U, Budde U, Lovis K, Dietrich T, Freitag A, Küpper L, Jähnisch K. Org. Process Res. Dev. 2009; 13: 952
  • 34 Dietrich TR, Freitag A, Scholz R. Chem. Eng. Technol. 2005; 28: 477
  • 35 Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S. Science (Washington, D. C.) 2004; 304: 1305
  • 36 Saaby S, Knudsen KR, Ladlow M, Ley SV. Chem. Commun. (Cambridge) 2005; 2909
  • 37 Jones RV, Godorhazy L, Varga N, Szalay D, Urge L, Darvas F. J. Comb. Chem. 2006; 8: 110
  • 38 Yoswathananont N, Nitta K, Nishiuchi Y, Sato M. Chem. Commun. (Cambridge) 2005; 40
  • 39 Desai B, Kappe CO. J. Comb. Chem. 2005; 7: 641
  • 40 Baxendale IR, Deeley J, Griffiths-Jones CM, Ley SV, Saaby S, Tranmer GK. Chem. Commun. (Cambridge) 2006; 2566
  • 41 Brasholz M, Macdonald JM, Saubern S, Ryan JH, Holmes AB. Chem.–Eur. J. 2010; 16: 11471
  • 42 Glasnov TN, Kappe CO. Adv. Synth. Catal. 2010; 352: 3089
  • 43 Lücke D, Dalton T, Ley SV, Wilson ZE. Chem.–Eur. J. 2016; 22: 4206
  • 44 Galla Z, Beke F, Forró E, Fülöp F. J. Mol. Catal. B: Enzym. 2016; 123: 107
  • 45 Garcia-Olmo AJ, Yepez A, Balu AM, Romero AA, Li Y, Luque R. Catal. Sci. Technol. 2016; 6: 4705
  • 46 Gutmann B, Elsner P, Cox DP, Weigl U, Roberge DM, Kappe CO. ACS Sustainable Chem. Eng. 2016; 4: 6048
  • 47 Leão RAC, Lopes RdO, Bezerra MAdM, Muniz MN, Casanova BB, Gnoatto SCB, Gosmann G, Kocsis L, de Souza ROMA, Miranda LSdM. J. Flow Chem. 2015; 5: 216
  • 48 Russell C, Lin AJS, Hains P, Simone MI, Robinson PJ, McCluskey A. RSC Adv. 2015; 5: 93433
  • 49 Kreutz JE, Shukhaev A, Du W, Druskin S, Daugulis O, Ismagilov RF. J. Am. Chem. Soc. 2010; 132: 3128
  • 50 OʼBrien M, Baxendale IR, Ley SV. Org. Lett. 2010; 12: 1596
  • 51 Yang MK, French RH, Tokarsky EW. J. Micro/Nanolithogr., MEMS, MOEMS 2008; 7: 033010
  • 52 Polyakov A, Yampolskii Y. Desalination 2006; 200: 20
  • 53 Pinnau I, Toy LG. J. Membr. Sci. 1996; 109: 125
  • 54 Hammoud AN, Baumann ED, Overton E, Myers IT, Suthar JL, Khachen W, Laghari JR. NASA Tech. Memo. 1992; 105753
  • 55 Biogeneral Inc.; www.biogeneral.com.
  • 56 Polyzos A, OʼBrien M, Petersen TP, Baxendale IR, Ley SV. Angew. Chem. Int. Ed. 2011; 50: 1190
  • 57 Brzozowski M, OʼBrien M, Ley SV, Polyzos A. Acc. Chem. Res. 2015; 48: 349
  • 58 Sun C, Zhao Y.-Y, Curtis JM. Anal. Chim. Acta 2013; 762: 68
  • 59 OʼBrien M. J. CO2 Util. 2017; 21: 580
  • 60 van Gool JJF, van den Broek SAMW, Ripken RM, Nieuwland PJ, Koch K, Rutjes FPJT. Chem. Eng. Technol. 2013; 36: 1042
  • 61 Rehman A, Fernández AML, Resul MFMG, Harvey A. J. CO2 Util. 2018; 24: 341
  • 62 Newby JA, Blaylock DW, Witt PM, Pastre JC, Zacharova MK, Ley SV, Browne DL. Org. Process Res. Dev. 2014; 18: 1211
  • 63 OʼBrien M, Taylor N, Polyzos A, Baxendale IR, Ley SV. Chem. Sci. 2011; 2: 1250
  • 64 Newton S, Ley SV, Arcé EC, Grainger DM. Adv. Synth. Catal. 2012; 354: 1805
  • 65 Lau S.-H, Bourne SL, Martin B, Schenkel B, Penn G, Ley SV. Org. Lett. 2015; 17: 5436
  • 66 Gross U, Koos P, OʼBrien M, Polyzos A, Ley SV. Eur. J. Org. Chem. 2014; 6418
  • 67 Koos P, Gross U, Polyzos A, OʼBrien M, Baxendale I, Ley SV. Org. Biomol. Chem. 2011; 9: 6903
  • 68 Mallia CJ, Walter GC, Baxendale IR. Beilstein J. Org. Chem. 2016; 12: 1503
  • 69 Hansen SVF, Wilson ZE, Ulven T, Ley SV. React. Chem. Eng. 2016; 1: 280
  • 70 Brancour C, Fukuyama T, Mukai Y, Skrydstrup T, Ryu I. Org. Lett. 2013; 15: 2794
  • 71 Bourne SL, OʼBrien M, Kasinathan S, Koos P, Tolstoy P, Hu DX, Bates RW, Martin B, Schenkel B, Ley SV. ChemCatChem 2013; 5: 159
  • 72 Kasinathan S, Bourne SL, Tolstoy P, Koos P, OʼBrien M, Bates RW, Baxendale IR, Ley SV. Synlett 2011; 2648
  • 73 Battilocchio C, Iannucci G, Wang S, Godineau E, Kolleth A, De Mesmaeker A, Ley SV. React. Chem. Eng. 2017; 2: 295
  • 74 Schotten C, Plaza D, Manzini S, Nolan SP, Ley SV, Browne DL, Lapkin A. ACS Sustainable Chem. Eng. 2015; 3: 1453
  • 75 Bourne SL, Koos P, OʼBrien M, Martin B, Schenkel B, Baxendale IR, Ley SV. Synlett 2011; 2643
  • 76 Pastre JC, Browne DL, OʼBrien M, Ley SV. Org. Process Res. Dev. 2013; 17: 1183
  • 77 Browne DL, OʼBrien M, Koos P, Cranwell PB, Polyzos A, Ley SV. Synlett 2012; 1402
  • 78 Cranwell PB, OʼBrien M, Browne DL, Koos P, Polyzos A, Peña-López M, Ley SV. Org. Biomol. Chem. 2012; 10: 5774
  • 79 Chaudhuri SR, Hartwig J, Kupracz L, Kodanek T, Wegner J, Kirschning A. Adv. Synth. Catal. 2014; 356: 3530
  • 80 Petersen TP, Polyzos A, OʼBrien M, Ulven T, Baxendale IR, Ley SV. ChemSusChem 2012; 5: 274
  • 81 Tomaszewski B, Lloyd RC, Warr AJ, Buehler K, Schmid A. ChemCatChem 2014; 6: 2567
  • 82 Tomaszewski B, Schmid A, Buehler K. Org. Process Res. Dev. 2014; 18: 1516
  • 83 Brzozowski M, Forni JA, Savage GP, Polyzos A. Chem. Commun. (Cambridge) 2015; 51: 334
  • 84 Sharma S, Maurya RA, Min K.-I, Jeong G.-Y, Kim D.-P. Angew. Chem. Int. Ed. 2013; 52: 7564
  • 85 Park JH, Park CY, Kim MJ, Kim MU, Kim YJ, Kim G.-H, Park CP. Org. Process Res. Dev. 2015; 19: 812
  • 86 Dallinger D, Kappe CO. Nat. Protoc. 2017; 12: 2138
  • 87 Dallinger D, Pinho VD, Gutmann B, Kappe CO. J. Org. Chem. 2016; 81: 5814
  • 88 Garbarino S, Guerra J, Poechlauer P, Gutmann B, Kappe CO. J. Flow Chem. 2016; 6: 211
  • 89 Koolman HF, Kantor S, Bogdan AR, Wang Y, Pan JY, Djuric SW. Org. Biomol. Chem. 2016; 14: 6591
  • 90 Pinho VD, Gutmann B, Miranda LSM, de Souza ROMA, Kappe CO. J. Org. Chem. 2014; 79: 1555
  • 91 Mastronardi F, Gutmann B, Kappe CO. Org. Lett. 2013; 15: 5590
  • 92 Buba AE, Koch S, Kunz H, Löwe H. Eur. J. Org. Chem. 2013; 4509
  • 93 Musio B, Gala E, Ley SV. ACS Sustainable Chem. Eng. 2018; 6: 1489
  • 94 Zhang J, Teixeira AR, Zhang H, Jensen KF. Anal. Chem. 2017; 89: 8524
  • 95 Yang L, Jensen KF. Org. Process Res. Dev. 2013; 17: 927
  • 96 Maurya RA, Park CP, Lee JH, Kim D.-P. Angew. Chem. Int. Ed. 2011; 50: 5952
  • 97 Park CP, Kim D.-P. J. Am. Chem. Soc. 2010; 132: 10102
  • 98 Agnese A, Elisabetta B, Giovanni F, Claudio F, Francesco GG, Stefano S, Enrica Z. Helv. Chim. Acta 2004; 87: 765
  • 99 Kourouli T, Kefalas P, Ragoussis N, Ragoussis V. J. Org. Chem. 2002; 67: 4615
  • 100 Stueckler C, Mueller NJ, Winkler CK, Glueck SM, Gruber K, Steinkellner G, Faber K. Dalton Trans. 2010; 39: 8472
  • 101 De Castro KA, Oh S, Yun J, Lim JK, An G, Kim DK, Rhee H. Synth. Commun. 2009; 39: 3509