de Vries, J. G.: 2018 Science of Synthesis, 2017/5: Catalytic Reduction in Organic Synthesis 1 DOI: 10.1055/sos-SD-226-00154
Catalytic Reduction in Organic Synthesis 1

1.8 Catalytic Reduction of Carbonates

Weitere Informationen

Buch

Herausgeber: de Vries, J. G.

Autoren: Bonrath, W.; Cazin, C. S. J.; Chen, Z.-P.; Dai, X.; de Vries, J. G.; Ding, K.; Ghosh, B.; Hudson, R.; Kaneda, K.; Li, Y.; Lv, H.; Maleczka, R. E.; Medlock, J. A.; Mitsudome, T.; Moores, A.; Müller, M.-A.; Nahra, F.; Nakagawa, Y.; Poechlauer, P.; Ravasio, N.; Shi, F.; Tamura, M.; Tan, X.; Tin, S.; Tomishige, K.; Zaccheria, F.; Zhang, X.; Zhou, Y.-G.; Zimmermann, A.

Titel: Catalytic Reduction in Organic Synthesis 1

Print ISBN: 9783132406216; Online ISBN: 9783132406254; Buch-DOI: 10.1055/b-005-145236

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Koch, G.; Molander, G. A.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Typ: Mehrbändiges Werk

 


Abstract

Carbonates are basic chemicals that are widely used in both industry and academia. Their reduction under either homogeneous or heterogeneous catalytic conditions generates formates, methanol, or methane. Carbonates can also act as a C1 building block for the reductive methylation of amines.

 
  • 1 Zaidman B, Wiener H, Sasson Y. Int. J. Hydrogen Energy 1986; 11: 341
  • 2 Wang W.-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. Chem. Rev. 2015; 115: 12936
  • 3 Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M. Angew. Chem. Int. Ed. 2010; 49: 9777
  • 4 Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. J. Am. Chem. Soc. 2012; 134: 20701
  • 5 Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M. Chem.–Eur. J. 2012; 18: 72
  • 6 Marcos R, Xue L, Sánchez-de-Armas R, Ahlquist MSG. ACS Catal. 2016; 6: 2923
  • 7 Bertini F, Mellone I, Ienco A, Peruzzini M, Gonsalvi L. ACS Catal. 2015; 5: 1254
  • 8 Langer R, Diskin-Posner Y, Leitus G, Shimon LJW, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2011; 50: 9948
  • 9 Rivada-Wheelaghan O, Dauth A, Leitus G, Diskin-Posner Y, Milstein D. Inorg. Chem. 2015; 54: 4526
  • 10 Knölker H.-J, Baum E, Goesmann H, Klauss R. Angew. Chem. Int. Ed. 1999; 38: 2064
  • 11 Zhu F, Zhu-Ge L, Yang G, Zhou S. ChemSusChem 2015; 8: 609
  • 12 Thai T.-T, Mérel DS, Poater A, Gaillard S, Renaud J.-L. Chem.–Eur. J. 2015; 21: 7066
  • 13 Jantke D, Pardatscher L, Drees M, Cokoja M, Herrmann WA, Kühn FE. ChemSusChem 2016; 9: 2849
  • 14 Liu Q, Wu L, Gülak S, Rockstroh N, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 7085
  • 15 Bredig G, Carter SR. Ber. Dtsch. Chem. Ges. 1914; 47: 541
  • 16 Stalder CJ, Chao S, Summers DP, Wrighton MS. J. Am. Chem. Soc. 1983; 105: 6318
  • 17 Chao S, Stalder CJ, Summers DP, Wrighton MS. J. Am. Chem. Soc. 1984; 106: 2723
  • 18 Wiener H, Blum J, Feilchenfeld H, Sasson Y, Zalmanov N. J. Catal. 1988; 110: 184
  • 19 Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D. Nat. Chem. 2011; 3: 609
  • 20 Yang X. ACS Catal. 2012; 2: 964
  • 21 Li H, Wen M, Wang Z.-X. Inorg. Chem. 2012; 51: 5716
  • 22 Hasanayn F, Baroudi A, Bengali AA, Goldman AS. Organometallics 2013; 32: 6969
  • 23 Han Z, Rong L, Wu J, Zhang L, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 13041
  • 24 Wu X, Ji L, Ji Y, Elageed EHM, Gao G. Catal. Commun. 2016; 85: 57
  • 25 Kim SH, Hong SH. ACS Catal. 2014; 4: 3630
  • 26 Deluzarche A, Hindermann JP, Kieffer R. J. Chem. Res., Synop. 1981; 72
  • 27 Deluzarche A, Hindermann JP, Kieffer R. J. Chem. Res., Miniprint. 1981; 934
  • 28 Lian C, Ren F, Liu Y, Zhao G, Ji Y, Rong H, Jia W, Ma L, Lu H, Wang D, Li Y. Chem. Commun. (Cambridge) 2015; 51: 1252
  • 29 Yin A, Wen C, Dai W.-L, Fan K. J. Mater. Chem. 2011; 21: 8997
  • 30 Liu H, Huang Z, Han Z, Ding K, Liu H, Xia C, Chen J. Green Chem. 2015; 17: 4281
  • 31 Chen X, Cui Y, Wen C, Wang B, Dai W.-L. Chem. Commun. (Cambridge) 2015; 51: 13776
  • 32 Cui Y, Chen X, Dai W.-L. RSC Adv. 2016; 6: 69530
  • 33 Tamura M, Kitanaka T, Nakagawa Y, Tomishige K. ACS Catal. 2016; 6: 376
  • 34 Li F, Wang L, Han X, He P, Cao Y, Li H. RSC Adv. 2016; 6: 45894
  • 35 Schumacher N, Andersson KJ, Nerlov J, Chorkendorff I. Surf. Sci. 2008; 602: 2783
  • 36 Tsuneto A, Kudo A, Saito N, Sakata T. Chem. Lett. 1992; 831
  • 37 Cabrero-Antonino JR, Adam R, Junge K, Beller M. Catal. Sci. Technol. 2016; 6: 7956
  • 38 Chandrasekaran K, Thomas JK. Chem. Phys. Lett. 1983; 99: 7
  • 39 Willner I, Mandler D. J. Am. Chem. Soc. 1989; 111: 1330
  • 40 Leonard DP, Pan H, Heagy MD. ACS Appl. Mater. Interfaces 2015; 7: 24543
  • 41 Jain S, Vardia J, Sharma A, Ameta SC. Int. J. Energy Res. 2001; 25: 107
  • 42 Stalder CJ, Chao S, Wrighton MS. J. Am. Chem. Soc. 1984; 106: 3673
  • 43 Spichiger-Ulmann M, Augustynski J. J. Chem. Soc., Faraday Trans. 1 1985; 81: 713
  • 44 Spichiger-Ulmann M, Augustynski J. Helv. Chim. Acta 1986; 69: 632
  • 45 Khalil LB, Youssef NS, Rophael MW, Moawad MM. J. Chem. Technol. Biotechnol. 1992; 55: 391
  • 46 Rophael MW, Malati MA. J. Chem. Soc., Chem. Commun. 1987; 1418
  • 47 Raphael MW, Malati MA. J. Photochem. Photobiol., A 1989; 46: 367
  • 48 Shkrob IA, Zhu Y, Marin TW, Abraham D. J. Phys. Chem. C 2013; 117: 19255
  • 49 Rusching U, Müller U, Willnow P, Höpner T. Eur. J. Biochem. 1976; 70: 325
  • 50 Klibanov AM, Alberti BN, Zale SE. Biotechnol. Bioeng. 1982; 24: 25