de Vries, J. G.: 2018 Science of Synthesis, 2017/5: Catalytic Reduction in Organic Synthesis 1 DOI: 10.1055/sos-SD-226-00133
Catalytic Reduction in Organic Synthesis 1

1.6 Catalytic Reduction of Phenols, Alcohols, and Diols

More Information

Book

Editor: de Vries, J. G.

Authors: Bonrath, W.; Cazin, C. S. J.; Chen, Z.-P.; Dai, X.; de Vries, J. G.; Ding, K.; Ghosh, B.; Hudson, R.; Kaneda, K.; Li, Y.; Lv, H.; Maleczka, R. E.; Medlock, J. A.; Mitsudome, T.; Moores, A.; Müller, M.-A.; Nahra, F.; Nakagawa, Y.; Poechlauer, P.; Ravasio, N.; Shi, F.; Tamura, M.; Tan, X.; Tin, S.; Tomishige, K.; Zaccheria, F.; Zhang, X.; Zhou, Y.-G.; Zimmermann, A.

Title: Catalytic Reduction in Organic Synthesis 1

Print ISBN: 9783132406216; Online ISBN: 9783132406254; Book DOI: 10.1055/b-005-145236

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Koch, G.; Molander, G. A.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

The catalytic deoxygenation of organic molecules has attracted a lot of attention in recent years because of interest in the use of biomass-derived fuels and chemicals. The raw materials used may contain up to 50 wt% of oxygen. In this chapter, some practical methods for the selective catalytic hydrodeoxygenation of phenols and alcohols to give arenes and alkanes, respectively, and the deoxydehydration of diols using hydrogen gas or transfer-hydrogenation methods are described.

 
  • 1 Furimsky E. Appl. Catal., A 2000; 199: 147
  • 2 Dickinson JG, Savage PE. ACS Catal. 2014; 4: 2605
  • 3 de Souza PM, Rabelo-Neto RC, Borges LEP, Jacobs G, Davis BH, Sooknoi T, Resasco DE, Noronha FB. ACS Catal. 2015; 5: 1318
  • 4 Wang W, Yang Y, Luo H, Hu T, Liu W. Catal. Commun. 2011; 12: 436
  • 5 Horáček J, Štávová G, Kelbichová V, Kubička D. Catal. Today 2013; 204: 38
  • 6 Newman C, Zhou X, Goundie B, Ghampson TI, Pollock RA, Ross Z, Wheeler MC, Meulenberg RW, Austin RN, Frederick BG. Appl. Catal., A 2014; 477: 64
  • 7 Huynh TM, Armbruster U, Pohl M.-M, Schneider M, Radnik J, Hoang D.-L, Phan BMQ, Nguyen DA, Martin A. ChemCatChem 2014; 6: 1940
  • 8 Shafaghat H, Rezaei PS, Daud WMAW. RSC Adv. 2015; 5: 33990
  • 9 Hong Y, Zhang H, Sun J, Ayman KM, Hensley AJR, Gu M, Engelhard MH, McEwen J.-S, Wang Y. ACS Catal. 2014; 4: 3335
  • 10 Nelson RC, Baek B, Ruiz P, Goundie B, Brooks A, Wheeler MC, Frederick BG, Grabow LC, Austin RN. ACS Catal. 2015; 5: 6509
  • 11 Hansen CA, Frost JW. J. Am. Chem. Soc. 2002; 124: 5926
  • 12 Ruppert AM, Weinberg K, Palkovits R. Angew. Chem. Int. Ed. 2012; 51: 2564
  • 13 Wang Y, Zhou J, Guo X. RSC Adv. 2015; 5: 74611
  • 14 Yasuda M, Onishi Y, Ueba M, Miyai T, Baba A. J. Org. Chem. 2001; 66: 7741
  • 15 Dai X.-J, Li C.-J. J. Am. Chem. Soc. 2016; 138: 5433
  • 16 Zhu S, Gao X, Zhu Y, Zhu Y, Zheng H, Li Y. J. Catal. 2013; 303: 70
  • 17 Qin L.-Z, Song M.-J, Chen C.-L. Green Chem. 2010; 12: 1466
  • 18 Taher D, Thibault ME, Di Mondo D, Jennings M, Schlaf M. Chem.–Eur. J. 2009; 15: 10132
  • 19 Chia M, Pagán-Torres YJ, Hibbitts D, Tan Q, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA. J. Am. Chem. Soc. 2011; 133: 12675
  • 20 Zelinski R, Eichel HJ. J. Org. Chem. 1958; 23: 462
  • 21 Gong J, Lou X.-J, Li W.-D, Jing X.-K, Chen H.-B, Zeng J.-B, Wang X.-L, Wang Y.-Z. J. Polym. Sci., Part A: Polym. Chem. 2010; 48: 2828
  • 22 Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ. Angew. Chem. Int. Ed. 2011; 50: 7083
  • 23 Shiramizu M, Toste FD. Angew. Chem. Int. Ed. 2013; 52: 12905
  • 24 Zhang H, Li X, Su X, Ang EL, Zhang Y, Zhao H. ChemCatChem 2016; 8: 1500
  • 25 Zhang Y, Li X. WO 2016 032 403, 2016
  • 26 Li X, Wu D, Lu T, Yi G, Su H, Zhang Y. Angew. Chem. Int. Ed. 2014; 53: 4200
  • 27 Shin N, Kwon S, Moon S, Hong CH, Kim YG. Tetrahedron 2017; 73: 4758
  • 28 Boussie TR, Dias EL, Fresco ZM, Murphy VJ, Shoemaker J, Archer R, Jiang H. WO 2010 144 862, 2010
  • 29 Zhang Y, Li X. WO 2015 084 265, 2015
  • 30 Sevonkaev IV, Kumar A, Pal A, Goia DV. RSC Adv. 2014; 4: 3653
  • 31 Matsumoto T, Ohishi M, Inoue S. J. Org. Chem. 1985; 50: 603
  • 32 Wang Q.-Y, Zeng H, Song H, Liu Q.-S, Yao S. J. Chem. Eng. Data 2010; 55: 5271
  • 33 Sousa SCA, Fernandes AC. Coord. Chem. Rev. 2015; 284: 67
  • 34 Raju S, Moret M.-E, Klein Gebbink RJM. ACS Catal. 2015; 5: 281
  • 35 Arceo E, Marsden P, Bergman RG, Ellman JA. Chem. Commun. (Cambridge) 2009; 3357
  • 36 Sun R, Zheng M, Li X, Pang J, Wang A, Wang X, Zhang T. Green Chem. 2017; 19: 638
  • 37 Chapman G, Nicholas KM. Chem. Commun. (Cambridge) 2013; 49: 8199
  • 38 Gopaladasu TV, Nicholas KM. ACS Catal. 2016; 6: 1901
  • 39 Hills L, Moyano R, Montilla F, Pastor A, Galindo A, Álvarez E, Marchetti F, Pettinari C. Eur. J. Inorg. Chem. 2013; 3352
  • 40 Sandbrink L, Beckerle K, Meiners I, Leffmann R, Rahimi K, Okuda J, Palkovits R. ChemSusChem 2017; 10: 1375
  • 41 Dethlefsen JR, Fristrup P. ChemSusChem 2015; 8: 767
  • 42 Arceo E, Ellman JA, Bergman RG. J. Am. Chem. Soc. 2010; 132: 11408
  • 43 Boucher-Jacobs C, Nicholas KM. ChemSusChem 2013; 6: 597
  • 44 McClain JM, Nicholas KM. ACS Catal. 2014; 4: 2109
  • 45 Li X, Zhang Y. ChemSusChem 2016; 9: 2774
  • 46 Shiramizu M, Toste FD. Angew. Chem. Int. Ed. 2012; 51: 8082
  • 47 Herrmann AT, Saito T, Stivala CE, Tom J, Zakarian A. J. Am. Chem. Soc. 2010; 132: 5962
  • 48 Mortensen PM, Grunwaldt J.-D, Jensen PA, Jensen AD. ACS Catal. 2013; 3: 1774
  • 49 Chen Q.-Y, He Y.-B. Synthesis 1988; 896
  • 50 Wang X.-Y, Leng J, Wang S.-M, Asiri AM, Marwani HM, Qin H.-L. Tetrahedron Lett. 2017; 58: 2340