Cazin, C.  et al.: 2018 Science of Synthesis, 2016/5b: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2 DOI: 10.1055/sos-SD-224-00152
N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2

2.5 Transition-Metal-Catalyzed Oxidations

More Information

Book

Editors: Cazin, C. ; Nolan, S.

Authors: Basle, O.; Broggi, J.; Claver, C.; Clavier, H.; Collins, S. K.; Costabile, C.; Crevisy, C.; Crozet, D.; Davies, A.; Diesendruck, C. E.; Felten, S.; Godard, C.; Grela, K.; Holtz-Mulholland, M.; Jana, A.; Johnson, J.; Lapkin, A.; Liu, J.; Lombardía, A.; Louie, J.; Malecki, P.; Mauduit, M.; Munz, D.; Nelson, D.; Peñafiel, I.; Schmid, T.; Slugovc, C.; Smith, A. D.; Thieuleux, C.; Zhong, Y.

Title: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2

Print ISBN: 9783132414006; Online ISBN: 9783132414044; Book DOI: 10.1055/b-004-140260

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

The use of transition-metal complexes with N-heterocyclic carbene (NHC) ligands for oxidative catalysis is summarized in this chapter. Special attention is given to the applicability in organic synthesis and the comparison of results for different reaction conditions and catalyst types. The stoichiometric reactivity of NHC–transition-metal complexes (Ru, Co, Ir, Ni, Pd) with molecular oxygen and the stabilization of high-valent metal complexes with chelating ligands are discussed. The oxidation of alcohols to aldehydes and ketones, Wacker-type oxidation, aziridination and epoxidation of olefins, oxidative scission of alkenes to aldehydes, and oxidation of saturated and aromatic hydrocarbons are addressed.

 
  • 1 Arnold PL, Sanford MS, Pearson SM. J. Am. Chem. Soc. 2009; 131: 13912
  • 2 McCall AS, Wang H, Desper JM, Kraft S. J. Am. Chem. Soc. 2011; 133: 1832
  • 3 Lehman MC, Pahls DR, Meredith JM, Sommer RD, Heinekey DM, Cundari TR, Ison EA. J. Am. Chem. Soc. 2015; 137: 3574
  • 4 Brewster TP, Blakemore JD, Schley ND, Incarvito CD, Hazari N, Brudvig GW, Crabtree RH. Organometallics 2011; 30: 965
  • 5 Hu X, Meyer K. J. Am. Chem. Soc. 2004; 126: 16322
  • 6 Meyer S, Klawitter I, Demeshko S, Bill E, Meyer F. Angew. Chem. Int. Ed. 2013; 52: 901
  • 7 Cramer SA, Jenkins DM. J. Am. Chem. Soc. 2011; 133: 19342
  • 8 Scepaniak JJ, Fulton MD, Bontchev RP, Duesler EN, Kirk ML, Smith JM. J. Am. Chem. Soc. 2008; 130: 10515
  • 9 Herrmann WA, Öfele K, Elison M, Kühn FE, Roesky PW. J. Organomet. Chem. 1994; 480: C7
  • 10 Lin B.-L, Kang P, Stack TDP. Organometallics 2010; 29: 3683
  • 11 Romanov AS, Bochmann M. Organometallics 2015; 34: 2439
  • 12 Marshall WJ, Grushin VV. Organometallics 2003; 22: 1591
  • 13 Turner ZR, Bellabarba R, Tooze RP, Arnold PL. J. Am. Chem. Soc. 2010; 132: 4050
  • 14 Lake BR, Ariafard A, Willans CE. Chem.–Eur. J. 2014; 20: 12729
  • 15 Romain C, Miqueu K, Sotiropoulos JM, Bellemin-Laponnaz S, Dagorne S. Angew. Chem. Int. Ed. 2010; 49: 2198
  • 16 Bacciu D, Cavell KJ, Fallis IA, Ooi LL. Angew. Chem. Int. Ed. 2005; 44: 5282
  • 17 Arnold PL, Turner ZR, Bellabarba R, Tooze RP. J. Am. Chem. Soc. 2011; 133: 11744
  • 18 Jurčík V, Schmid TE, Dumont Q, Slawin AMZ, Cazin CSJ. Dalton Trans. 2012; 41: 12619
  • 19 Konnick MM, Guzei IA, Stahl SS. J. Am. Chem. Soc. 2004; 126: 10212
  • 20 Konnick MM, Gandhi BA, Guzei IA, Stahl SS. Angew. Chem. Int. Ed. 2006; 45: 2904
  • 21 Konnick MM, Stahl SS. J. Am. Chem. Soc. 2008; 130: 5753
  • 22 Häller LJL, Mas-Marzá E, Moreno A, Lowe JP, Macgregor SA, Mahon MF, Pregosin PS, Whittlesey MK. J. Am. Chem. Soc. 2009; 131: 9618
  • 23 Hu X, Castro-Rodriguez I, Meyer K. J. Am. Chem. Soc. 2004; 126: 13464
  • 24 Lehman MC, Boyle PD, Sommer RD, Ison EA. Organometallics 2014; 33: 5081
  • 25 Dible BR, Sigman MS. J. Am. Chem. Soc. 2003; 125: 872
  • 26 Sigman MS, Werner EW. Acc. Chem. Res. 2012; 45: 874
  • 27 Podhajsky SM, Sigman MS, In N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools. Díez-González S, Ed.;. RSC Cambridge 2011);; p 345
  • 28 Sigman MS, Jensen DR. Acc. Chem. Res. 2006; 39: 221
  • 29 Gligorich KM, Sigman MS. Chem. Commun. (Cambridge) 2009; 3854
  • 30 Nielsen RJ, Goddard III WA. J. Am. Chem. Soc. 2006; 128: 9651
  • 31 Mueller JA, Goller CP, Sigman MS. J. Am. Chem. Soc. 2004; 126: 9724
  • 32 Jensen DR, Schultz MJ, Mueller JA, Sigman MS. Angew. Chem. Int. Ed. 2003; 42: 3810
  • 33 Schultz MJ, Hamilton SS, Jensen DR, Sigman MS. J. Org. Chem. 2005; 70: 3343
  • 34 Chen T, Jiang J.-J, Xu Q, Shi M. Org. Lett. 2007; 9: 865
  • 35 Jensen DR, Sigman MS. Org. Lett. 2003; 5: 63
  • 36 Berini C, Brayton DF, Mocka C, Navarro O. Org. Lett. 2009; 11: 4244
  • 37 Liu X, Xia Q, Zhang Y, Chen C, Chen W. J. Org. Chem. 2013; 78: 8531
  • 38 Han L, Xing P, Jiang B. Org. Lett. 2014; 16: 3428
  • 39 Delgado-Rebollo M, Canseco-Gonzalez D, Hollering M, Müller-Bunz H, Albrecht M. Dalton Trans. 2014; 43: 4462
  • 40 Olguín J, Müller-Bunz H, Albrecht M. Chem. Commun. (Cambridge) 2014; 50: 3488
  • 41 Scarborough CC, Bergant A, Sazama GT, Guzei IA, Spencer LC, Stahl SS. Tetrahedron 2009; 65: 5084
  • 42 Muñiz K. Adv. Synth. Catal. 2004; 346: 1425
  • 43 Rogers MM, Wendlandt JE, Guzei IA, Stahl SS. Org. Lett. 2006; 8: 2257
  • 44 Liu GS, Stahl SS. J. Am. Chem. Soc. 2007; 129: 6328
  • 45 Ye X, White PB, Stahl SS. J. Org. Chem. 2013; 78: 2083
  • 46 Cornell CN, Sigman MS. J. Am. Chem. Soc. 2005; 127: 2796
  • 47 Kück JW, Raba A, Markovits IIE, Cokoja M, Kühn FE. ChemCatChem 2014; 6: 1882
  • 48 Hauser SA, Cokoja M, Kühn FE. Catal. Sci. Technol. 2013; 3: 552
  • 49 Kandepi VVKM, Cardoso JMS, Royo B. Catal. Lett. 2010; 136: 222
  • 50 Salman AW, Ur Rehman G, Abdullah N, Budagumpi S, Endud S, Hadi Abdallah H, Wong WY. Polyhedron 2014; 81: 499
  • 51 Cramer SA, Hernández Sánchez R, Brakhage DF, Jenkins DM. Chem. Commun. (Cambridge) 2014; 50: 13967
  • 52 Daw P, Petakamsetty R, Sarbajna A, Laha S, Ramapanicker R, Bera JK. J. Am. Chem. Soc. 2014; 136: 13987
  • 53 Poyatos M, Mata JA, Falomir E, Crabtree RH, Peris E. Organometallics 2003; 22: 1110
  • 54 Muehlhofer M, Strassner T, Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1745
  • 55 Munz D, Strassner T. Angew. Chem. Int. Ed. 2014; 53: 2485
  • 56 Munz D, Strassner T. Chem.–Eur. J. 2014; 20: 14872
  • 57 Munz D, Meyer D, Strassner T. Organometallics 2013; 32: 3469
  • 58 Hou X.-F, Wang Y.-N, Göttker-Schnetmann I. Organometallics 2011; 30: 6053
  • 59 McCall AS, Kraft S. Organometallics 2012; 31: 3527
  • 60 Desai SP, Mondal M, Choudhury J. Organometallics 2015; 34: 2731
  • 61 Tato F, García-Domínguez A, Cárdenas DJ. Organometallics 2013; 32: 7487
  • 62 Raba A, Cokoja M, Herrmann WA, Kühn FE. Chem. Commun. (Cambridge) 2014; 50: 11454
  • 63 Hohloch S, Kaiser S, Duecker FL, Bolje A, Maity R, Košmrlj J, Sarkar B. Dalton Trans. 2015; 44: 686
  • 64 Gupta SK, Choudhury J. Dalton Trans. 2015; 44: 1233
  • 65 Zhou M, Schley ND, Crabtree RH. J. Am. Chem. Soc. 2010; 132: 12550
  • 66 Zhou M, Hintermair U, Hashiguchi BG, Parent AR, Hashmi SM, Elimelech M, Periana RA, Brudvig GW, Crabtree RH. Organometallics 2013; 32: 957
  • 67 Zhou M, Balcells D, Parent AR, Crabtree RH, Eisenstein O. ACS Catal. 2012; 2: 208