Cazin, C.  et al.: 2018 Science of Synthesis, 2016/5b: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2 DOI: 10.1055/sos-SD-224-00063
N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2

2.3 Cyclization Reactions

More Information

Book

Editors: Cazin, C. ; Nolan, S.

Authors: Basle, O.; Broggi, J.; Claver, C.; Clavier, H.; Collins, S. K.; Costabile, C.; Crevisy, C.; Crozet, D.; Davies, A.; Diesendruck, C. E.; Felten, S.; Godard, C.; Grela, K.; Holtz-Mulholland, M.; Jana, A.; Johnson, J.; Lapkin, A.; Liu, J.; Lombardía, A.; Louie, J.; Malecki, P.; Mauduit, M.; Munz, D.; Nelson, D.; Peñafiel, I.; Schmid, T.; Slugovc, C.; Smith, A. D.; Thieuleux, C.; Zhong, Y.

Title: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2

Print ISBN: 9783132414006; Online ISBN: 9783132414044; Book DOI: 10.1055/b-004-140260

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

This chapter presents a detailed overview of current research into N-heterocyclic carbene (NHC) coordinated, transition-metal-catalyzed cyclization reactions. Highly efficient and economical access to pharmacologically relevant moieties, such as carbo- and heterocycles, is crucial in synthetic chemistry. Though cyclizations are atom-economical, historically harsh reaction conditions, poor substrate tolerance, and low product selectivity severely limited the practicality of such reactions. However, transition-metal catalysts based on copper, gold, palladium, nickel, rhodium, cobalt, and iron have allowed for the rapid synthesis of cyclization products in good to high yield and with high selectivity. In addition, these cyclizations tolerate starting materials bearing a variety of functional groups. Symmetric and asymmetric NHC ligands have proven to be critical for success in generating efficient transition-metal based catalytic systems. The electronic and steric diversity of NHC ligands allows for the fine-tuning of the transition-metal catalyst, which has resulted in effective [n + m]-cycloaddition reactions, inter- and intramolecular cycloisomerization reactions, and rearrangement reactions.

 
  • 1 Nieto-Oberhuber C, López S, Echavarren AM. J. Am. Chem. Soc. 2005; 127: 6178
  • 2 Ricard L, Gagosz F. Organometallics 2007; 26: 4704
  • 3 López S, Herrero-Gómez E, Pérez-Galán P, Nieto-Oberhuber C, Echavarren AM. Angew. Chem. Int. Ed. 2006; 45: 6029
  • 4 Kim SM, Park JH, Choi SY, Chung YK. Angew. Chem. Int. Ed. 2007; 46: 6172
  • 5 Witham CA, Mauleón P, Shapiro ND, Sherry BD, Toste FD. J. Am. Chem. Soc. 2007; 129: 5838
  • 6 Wang W, Yang J, Wang F, Shi M. Organometallics 2011; 30: 3859
  • 7 Escribano-Cuesta A, López-Carrillo V, Janssen D, Echavarren AM. Chem.–Eur. J. 2009; 15: 5646
  • 8 Reeds JP, Whitwood AC, Healy MP, Fairlamb IJS. Chem. Commun. (Cambridge) 2010; 46: 2046
  • 9 Reeds JP, Whitwood AC, Healy MP, Fairlamb IJS. Organometallics 2013; 32: 3108
  • 10 Saito A, Konishi T, Hanzawa Y. Org. Lett. 2010; 12: 372
  • 11 Kim SM, Park JH, Kang YK, Chung YK. Angew. Chem. Int. Ed. 2009; 48: 4532
  • 12 Trillo B, López F, Montserrat S, Ujaque G, Castedo L, Lledós A, Mascareñas JL. Chem.–Eur. J. 2009; 15: 3336
  • 13 Faustino H, López F, Castedo L, Mascareñas JL. Chem. Sci. 2011; 2: 633
  • 14 Francos J, Grande-Carmona F, Faustino H, Iglesias-Sigüenza J, Díez E, Alonso I, Fernández R, Lassaletta JM, López F, Mascareñas JL. J. Am. Chem. Soc. 2012; 134: 14322
  • 15 Zhang G, Huang X, Li G, Zhang L. J. Am. Chem. Soc. 2008; 130: 1814
  • 16 Rao W, Koh MJ, Chan PWH. J. Org. Chem. 2013; 78: 3183
  • 17 Marion N, Lemière G, Correa A, Costabile C, Ramón RS, Moreau X, de Frémont P, Dahmane R, Hours A, Lesage D, Tabet J.-C, Goddard J.-P, Gandon V, Cavallo L, Fensterbank L, Malacria M, Nolan SP. Chem.–Eur. J. 2009; 15: 3243
  • 18 Correa A, Marion N, Fensterbank L, Malacria M, Nolan SP, Cavallo L. Angew. Chem. Int. Ed. 2008; 47: 718
  • 19 Marion N, Díez-González S, de Frémont P, Noble AR, Nolan SP. Angew. Chem. Int. Ed. 2006; 45: 3647
  • 20 Li D, Rao W, Tay GL, Ayers BJ, Chan PWH. J. Org. Chem. 2014; 79: 11301
  • 21 Rao W, Chan PWH. Chem.–Eur. J. 2014; 20: 713
  • 22 Lauterbach T, Arndt S, Rudolph M, Rominger F, Hashmi ASK. Adv. Synth. Catal. 2013; 355: 1755
  • 23 Shi H, Fang L, Tan C, Shi L, Zhang W, Li C.-C, Luo T, Yang Z. J. Am. Chem. Soc. 2011; 133: 14944
  • 24 Suárez-Pantiga S, Rubio E, Alvarez-Rúa C, González JM. Org. Lett. 2009; 11: 13
  • 25 Tomás-Mendivil E, Toullec PY, Díez J, Conejero S, Michelet V, Cadierno V. Org. Lett. 2012; 14: 2520
  • 26 Hase S, Kayaki Y, Ikariya T. Organometallics 2013; 32: 5285
  • 27 Teo WT, Rao W, Koh MJ, Chan PWH. J. Org. Chem. 2013; 78: 7508
  • 28 Liu X.-Y, Ding P, Huang J.-S, Che C.-M. Org. Lett. 2007; 9: 2645
  • 29 Guo P, Zeng X, Chen S, Luo M. J. Organomet. Chem. 2014; 751: 438
  • 30 Reddy BVS, Swain M, Reddy SM, Yadav JS, Sridhar B. J. Org. Chem. 2012; 77: 11355
  • 31 Wang X, Dong S, Yao Z, Feng L, Daka P, Wang H, Xu Z. Org. Lett. 2014; 16: 22
  • 32 Gimeno A, Medio-Simón M, Ramírez de Arellano C, Asensio G, Cuenca AB. Org. Lett. 2010; 12: 1900
  • 33 Yeom H.-S, So E, Shin S. Chem.–Eur. J. 2011; 17: 1764
  • 34 Naoe S, Suzuki Y, Hirano K, Inaba Y, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2012; 77: 4907
  • 35 Arduengo III AJ, Dias HVR, Calabrese JC, Davidson F. Organometallics 1993; 12: 3405
  • 36 Lazreg F, Nahra F, Cazin CSJ. Coord. Chem. Rev. 2015; 293–294: 48
  • 37 Díez-González S, Correa A, Cavallo L, Nolan SP. Chem.–Eur. J. 2006; 12: 7558
  • 38 Díez-González S, Stevens ED, Nolan SP. Chem. Commun. (Cambridge) 2008; 4747
  • 39 Díez-González S, Escudero-Adán EC, Benet-Buchholz J, Stevens ED, Slawin AMZ, Nolan SP. Dalton Trans. 2010; 39: 7595
  • 40 Díez-González S, Nolan SP. Angew. Chem. Int. Ed. 2008; 47: 8881
  • 41 Lazreg F, Slawin AMZ, Cazin CSJ. Organometallics 2012; 31: 7969
  • 42 Collinson J.-M, Wilton-Ely JDET, Díez-González S. Chem. Commun. (Cambridge) 2013; 49, 11: 358
  • 43 Sau SC, Roy SR, Sen TK, Mullangi D, Mandal SK. Adv. Synth. Catal. 2013; 355: 2982
  • 44 Hohloch S, Sarkar B, Nauton L, Cisnetti F, Gautier A. Tetrahedron Lett. 2013; 54: 1808
  • 45 Hohloch S, Scheiffele D, Sarkar B. Eur. J. Inorg. Chem. 2013; 3956
  • 46 Teyssot M.-L, Chevry A, Traïkia M, El-Ghozzi M, Avignant D, Gautier A. Chem.–Eur. J. 2009; 15: 6322
  • 47 Teyssot M.-L, Nauton L, Canet J.-L, Cisnetti F, Chevry A, Gautier A. Eur. J. Org. Chem. 2010; 3507
  • 48 Muñiz K. Adv. Synth. Catal. 2004; 346: 1425
  • 49 Rogers MM, Wendlandt JE, Guzei IA, Stahl SS. Org. Lett. 2006; 8: 2257
  • 50 Lee S, Hartwig JF. J. Org. Chem. 2001; 66: 3402
  • 51 Glorius F, Altenhoff G, Goddard R, Lehmann CW. Chem. Commun. (Cambridge) 2002; 2704
  • 52 Arao T, Kondo K, Aoyama T. Tetrahedron Lett. 2006; 47: 1417
  • 53 Kündig EP, Seidel TM, Jia Y.-X, Bernardinelli G. Angew. Chem. Int. Ed. 2007; 46: 8484
  • 54 Jia Y.-X, Hillgren JM, Watson EL, Marsden SP, Kündig EP. Chem. Commun. (Cambridge) 2008; 4040
  • 55 Luan X, Mariz R, Robert C, Gatti M, Blumentritt S, Linden A, Dorta R. Org. Lett. 2008; 10: 5569
  • 56 Luan X, Wu L, Drinkel E, Mariz R, Gatti M, Dorta R. Org. Lett. 2010; 12: 1912
  • 57 Wu L, Falivene L, Drinkel E, Grant S, Linden A, Cavallo L, Dorta R. Angew. Chem. Int. Ed. 2012; 51: 2870
  • 58 Louie J, Gibby JE, Farnworth MV, Tekavec TN. J. Am. Chem. Soc. 2002; 124: 15188
  • 59 Tekavec TN, Arif AM, Louie J. Tetrahedron 2004; 60: 7431
  • 60 Duong HA, Cross MJ, Louie J. J. Am. Chem. Soc. 2004; 126: 11438
  • 61 Duong HA, Louie J. Tetrahedron 2006; 62: 7552
  • 62 McCormick MM, Duong HA, Zuo G, Louie J. J. Am. Chem. Soc. 2005; 127: 5030
  • 63 Tekavec TN, Zuo G, Simon K, Louie J. J. Org. Chem. 2006; 71: 5834
  • 64 Stolley RM, Maczka MT, Louie J. Eur. J. Org. Chem. 2011; 3815
  • 65 Kumar P, Zhang K, Louie J. Angew. Chem. Int. Ed. 2012; 51: 8602
  • 66 Kumar P, Thakur A, Hong X, Houk KN, Louie J. J. Am. Chem. Soc. 2014; 136: 17844
  • 67 Murakami M, Ashida S, Matsuda T. J. Am. Chem. Soc. 2005; 127: 6932
  • 68 Murakami M, Ashida S, Matsuda T. Tetrahedron 2006; 62: 7540
  • 69 Murakami M, Ashida S, Matsuda T. J. Am. Chem. Soc. 2006; 128: 2166
  • 70 Liu L, Montgomery J. J. Am. Chem. Soc. 2006; 128: 5348
  • 71 Liu L, Montgomery J. Org. Lett. 2007; 9: 3885
  • 72 Nishimura A, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2012; 134: 15692
  • 73 Zuo G, Louie J. Angew. Chem. Int. Ed. 2004; 43: 2277
  • 74 Tekavec TN, Louie J. Tetrahedron 2008; 64: 6870
  • 75 Ho C.-Y, He L. J. Org. Chem. 2014; 79: 11873
  • 76 Ho C.-Y, He L. Angew. Chem. Int. Ed. 2010; 49: 9182
  • 77 Ho C.-Y, He L. Chem. Commun. (Cambridge) 2012; 48: 1481
  • 78 Evans PA, Baum EW, Fazal AN, Pink M. Chem. Commun. (Cambridge) 2005; 63
  • 79 Lee SI, Park SY, Jung IG, Choi SY, Chung YK. J. Org. Chem. 2006; 71: 91
  • 80 Saino N, Kogure D, Okamoto S. Org. Lett. 2005; 7: 3065
  • 81 Geny A, Gaudrel S, Slowinski F, Amatore M, Chouraqui G, Malacria M, Aubert C, Gandon V. Adv. Synth. Catal. 2009; 351: 271
  • 82 Dieskau AP, Holzwarth MS, Plietker B. J. Am. Chem. Soc. 2012; 134: 5048