Gao, S. et al.: 2016 Science of Synthesis, 2016/4b: Metal-Catalyzed Cyclization Reactions 2 DOI: 10.1055/sos-SD-222-00346
Metal-Catalyzed Cyclization Reactions 2

2.10 Ring-Closing Metathesis

Weitere Informationen

Buch

Herausgeber: Gao, S.; Ma, S.

Autoren: Bora, U.; Dominguez, G.; Du, H.; Garve, L.; Harmata, M.; Hu, W.; Jones, D. E.; Lee, D.; Li, X.; Mondal, M.; Pérez Castells, J.; Sabbasani, V. R.; Shibata, Y.; Tanaka, K.; Tang, W.; Werz, D. B.; Xia, F.; Xu, X.; Ye, S.

Titel: Metal-Catalyzed Cyclization Reactions 2

Print ISBN: 9783131998118; Online ISBN: 9783132404823; Buch-DOI: 10.1055/b-004-129734

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Typ: Mehrbändiges Werk

 


Abstract

Ring-closing metathesis (RCM) has emerged as a powerful synthetic tool. Depending on the unsaturated functional groups involved, ring-closing-metathesis reactions are classified into three categories: diene ring-closing metathesis, enyne ring-closing metathesis, and diyne ring-closing metathesis. These are mediated/catalyzed by metal alkylidenes or alkylidynes to form cyclic alkenes or alkynes, with ring sizes ranging from small to large, and including both carbocycles and heterocycles. Mechanistically, diene and diyne ring-closing metathesis involves an exchange reaction between the participating alkenes or alkynes, whereas enyne ring-closing metathesis involves a formal addition reaction between an alkene and an alkyne. This chapter summarizes the distinctive features of these different ring-closing metathesis processes in terms of the advancement of mechanistic understanding and the development of effective catalyst systems and their application to natural product synthesis.

 
  • 1 Villemin D. Tetrahedron Lett. 1980; 21: 1715
  • 2 Tsuji J, Hashiguchi S. Tetrahedron Lett. 1980; 21: 2955
  • 3 Fu GC, Grubbs RH. J. Am. Chem. Soc. 1993; 115: 3800
  • 4 Fu GC, Nguyen ST, Grubbs RH. J. Am. Chem. Soc. 1993; 115: 9856
  • 5 Katz TJ, Sivavec TM. Tetrahedron Lett. 1985; 26: 2159
  • 6 Katz TJ, Sivavec TM. J. Am. Chem. Soc. 1985; 107: 737
  • 7 Korkowski PF, Hoye TR, Rydberg DB. J. Am. Chem. Soc. 1988; 110: 2676
  • 8 Hoye TR, Rehberg GM. Organometallics 1989; 8: 2070
  • 9 Hoye TR, Rehberg GM. J. Am. Chem. Soc. 1990; 112: 2841
  • 10 Watanuki S, Ochifuji N, Mori M. Organometallics 1994; 13: 4129
  • 11 Watanuki S, Mori M. Organometallics 1995; 14: 5054
  • 12 Watanuki S, Ochifuji N, Mori M. Organometallics 1995; 14: 5062
  • 13 Kinoshita A, Mori M. Synlett 1994; 1020
  • 14 Kim S.-H, Bowden N, Grubbs RH. J. Am. Chem. Soc. 1994; 116: 10801
  • 15 Fürstner A, Seidel G. Angew. Chem. Int. Ed. 1998; 37: 1734
  • 16 Akiyama M, Chisholm MH, Cotton FA, Extine MW, Haitko DA, Little D, Fanwick PE. Inorg. Chem. 1979; 18: 2266
  • 17 Fürstner A, Guth O, Rumbo A, Seidel G. J. Am. Chem. Soc. 1999; 121: 11108
  • 18 Urbina-Blanco CA, Poater A, Lebl T, Manzini S, Slawin AMZ, Cavallo L, Nolan SP. J. Am. Chem. Soc. 2013; 135: 7073
  • 19 Romero PE, Piers WE, McDonald R. Angew. Chem. Int. Ed. 2004; 43: 6161
  • 20 van der Eide EF, Romero PE, Piers WE. J. Am. Chem. Soc. 2008; 130: 4485
  • 21 Schleyer PVR, Williams JE, Blanchard KR. J. Am. Chem. Soc. 1970; 92: 2378
  • 22 Bourgeois D, Pancrazi A, Ricard L, Prunet J. Angew. Chem. Int. Ed. 2000; 39: 725
  • 23 Matsui R, Seto K, Fujita K, Suzuki T, Nakazaki A, Kobayashi S. Angew. Chem. Int. Ed. 2010; 49: 10068
  • 24 Fürstner A, Radkowski K, Wirtz C, Goddard R, Lehmann CW, Mynott R. J. Am. Chem. Soc. 2002; 124: 7061
  • 25 Murga J, Falomir E, García-Fortanet J, Carda M, Marco JA. Org. Lett. 2002; 4: 3447
  • 26 Meng D, Su D.-S, Balog A, Bertinato P, Sorensen AJ, Danishefsky SJ, Zheng Y.-H, Chou T.-C, He L, Horwitz SB. J. Am. Chem. Soc. 1997; 119: 2733
  • 27 Fürstner A, Thiel OR, Blanda G. Org. Lett. 2000; 2: 3731
  • 28 Arisawa M, Kato C, Kaneko H, Nishida A, Nakagawa M. J. Chem. Soc., Perkin Trans. 1 2000; 1873
  • 29 Nakashima K, Ito R, Sono M, Tori M. Heterocycles 2000; 53: 301
  • 30 Lee CW, Grubbs RH. Org. Lett. 2000; 2: 2145
  • 31 Yu M, Wang C, Kyle AF, Jakubec P, Dixon DJ, Schrock RR, Hoveyda AH. Nature (London) 2011; 479: 88
  • 32 Wang Y, Jimenez M, Hansen AS, Raiber E.-A, Schreiber SL, Young DW. J. Am. Chem. Soc. 2011; 133: 9196
  • 33 Marx VM, Herbert MB, Keitz BK, Grubbs RH. J. Am. Chem. Soc. 2013; 135: 94
  • 34 Rosebrugh LE, Herbert MB, Marx VM, Keitz BK, Grubbs RH. J. Am. Chem. Soc. 2013; 135: 1276
  • 35 Quinn KJ, Isaacs AK, Arvary RA. Org. Lett. 2004; 6: 4143
  • 36 Quinn KJ, Isaacs AK, DeChristopher BA, Szklarz SC, Arvary RA. Org. Lett. 2005; 7: 1243
  • 37 Michaelis S, Blechert S. Org. Lett. 2005; 7: 5513
  • 38 Baylon C, Heck M.-P, Misoskowski C. J. Org. Chem. 1999; 64: 3354
  • 39 Heck M.-P, Baylon C, Nolan SP, Misoskowski C. Org. Lett. 2001; 3: 1989
  • 40 Clark JS, Hamelin O. Angew. Chem. Int. Ed. 2000; 39: 372
  • 41 Ma S, Ni B. Org. Lett. 2002; 4: 639
  • 42 Ma S, Ni B. Chem.–Eur. J. 2004; 10: 3286
  • 43 Sello JK, Andreana PR, Lee D, Schreiber SL. Org. Lett. 2003; 5: 4125
  • 44 Hoye TR, Jeffrey CS, Tennakoon MA, Wang J, Zhao H. J. Am. Chem. Soc. 2004; 126: 10210
  • 45 Hansen EC, Lee D. Org. Lett. 2004; 6: 2035
  • 46 Hansen Ph.D. EC. Thesis. University of Wisconsin; Madison, WI 2006
  • 47 Wang X, Bowman EJ, Bowman BJ, Porco Jr. JA. Angew. Chem. Int. Ed. 2004; 43: 3601
  • 48 Huwe CM, Velder J, Blechert S. Angew. Chem. Int. Ed. 1996; 35: 2376
  • 49 Huwe CM, Blechert S. Synthesis 1997; 61
  • 50 Evans PA, Cui J, Buffone GP. Angew. Chem. Int. Ed. 2003; 42: 1734
  • 51 Alexander JB, La DS, Cefalo DR, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1998; 120: 4041
  • 52 La DS, Alexander JB, Cefalo DR, Graf DD, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1998; 120: 9720
  • 53 Seiders TJ, Ward DW, Grubbs RH. Org. Lett. 2001; 3: 3225
  • 54 Zhu SS, Cefalo DR, La DS, Jamieson JY, Davis WM, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1999; 121: 8251
  • 55 Funk TW, Berlin JM, Grubbs RH. J. Am. Chem. Soc. 2006; 128: 1840
  • 56 Sattely ES, Cortez GA, Moebius DC, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2005; 127: 8526
  • 57 Malcolmson SJ, Meek SJ, Sattely ES, Schrock RR, Hoveyda AH. Nature (London) 2008; 456: 933
  • 58 Donohoe TJ, Rosa CP. Org. Lett. 2007; 9: 5509
  • 59 Miller AK, Hughes CC, Kennedy-Smith JJ, Gradl SN, Trauner D. J. Am. Chem. Soc. 2006; 128: 17057
  • 60 Dai M, Danishefsky SJ. J. Am. Chem. Soc. 2007; 129: 3498
  • 61 Dai M, Krauss IJ, Danishefsky SJ. J. Org. Chem. 2008; 73: 9576
  • 62 Ziegler FE, Metcalf III CA, Nangia A, Schulte G. J. Am. Chem. Soc. 1993; 115: 2581
  • 63 Hanessian S, Margarita R, Hall A, Johnstone S, Tremblay M, Parlanti L. J. Am. Chem. Soc. 2002; 124: 13342
  • 64 Hanessian S, Tremblay M, Petersen JFW. J. Am. Chem. Soc. 2004; 126: 6064
  • 65 Trost BM, Horne DB, Woltering MJ. Angew. Chem. Int. Ed. 2003; 42: 5987
  • 66 Trost BM, Horne DB, Woltering MJ. Chem.–Eur. J. 2006; 12: 6607
  • 67 Crimmins MT, Zhang Y, Diaz FA. Org. Lett. 2006; 8: 2369
  • 68 She Ph.D. J. Dissertation, University of North Carolina at Chapel Hill. Chapel Hill; NC 2004
  • 69 Kuramochi A, Usuda H, Yamatsugu K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2005; 127: 14200
  • 70 Nicolaou KC, Tria GS, Edmonds DJ. Angew. Chem. Int. Ed. 2008; 47: 1780
  • 71 Hayashida J, Rawal VH. Angew. Chem. Int. Ed. 2008; 47: 4373
  • 72 Yun SY, Zheng J.-C, Lee D. Angew. Chem. Int. Ed. 2008; 47: 6201
  • 73 Tiefenbacher K, Mulzer J. J. Org. Chem. 2009; 74: 2937
  • 74 White DE, Stewart IC, Grubbs RH, Stoltz BM. J. Am. Chem. Soc. 2008; 130: 810
  • 75 Hoshi M, Kaneko O, Nakajima M, Arai S, Nishida A. Org. Lett. 2014; 16: 768
  • 76 Nagatomo M, Koshimizu M, Masuda K, Tabuchi T, Urabe D, Inoue M. J. Am. Chem. Soc. 2014; 136: 5916
  • 77 Zhang H, Curran DP. J. Am. Chem. Soc. 2011; 133: 10376
  • 78 Umezaki S, Yokoshima S, Fukuyama T. Org. Lett. 2013; 15: 4230
  • 79 Liu G, Romo D. Angew. Chem. Int. Ed. 2011; 50: 7537
  • 80 Nickel A, Maruyama T, Tang H, Murphy PD, Greene B, Yusuff N, Wood JL. J. Am. Chem. Soc. 2004; 126: 16300
  • 81 Watanabe K, Suzuki Y, Aoki K, Sakakura A, Suenaga K, Kigoshi H. J. Org. Chem. 2004; 69: 7802
  • 82 Ohyoshi T, Funakubo S, Miyazawa Y, Niida K, Hayakawa I, Kigoshi H. Angew. Chem. Int. Ed. 2012; 51: 4972
  • 83 Winkler JD, Rouse MB, Greaney MF, Harrison SJ, Jeon YT. J. Am. Chem. Soc. 2002; 124: 9726
  • 84 Kalidindi S, Jeong WB, Schall A, Bandichhor R, Nosse B, Reiser O. Angew. Chem. Int. Ed. 2007; 46: 6361
  • 85 Willot M, Radtke L, Könning D, Fröhlich R, Gessner VH, Strohmann C, Christmann M. Angew. Chem. Int. Ed. 2009; 48: 9105
  • 86 Zahel M, Keβberg A, Metz P. Angew. Chem. Int. Ed. 2013; 52: 5390
  • 87 Nicolaou KC, Bunnage ME, Koide K. J. Am. Chem. Soc. 1994; 116: 8402
  • 88 Cook GR, Shanker PS, Peterson SL. Org. Lett. 1999; 1: 615
  • 89 Fürstner A, Thiel OR. J. Org. Chem. 2000; 65: 1738
  • 90 Paquette LA, Tae J, Arrington MP, Sadoun AH. J. Am. Chem. Soc. 2000; 122: 2742
  • 91 Krafft ME, Cheung Y.-Y, Juliano-Capucao CA. Synthesis 2000; 1020
  • 92 Krafft ME, Cheung YY, Abboud KA. J. Org. Chem. 2001; 66: 7443
  • 93 Tsuna K, Noguchi N, Nakada M. Angew. Chem. Int. Ed. 2011; 50: 9452
  • 94 Hog DT, Huber FME, Mayer P, Trauner D. Angew. Chem. Int. Ed. 2014; 53: 8513
  • 95 Takao K.-I, Watanabe G, Yasui H, Tadano K.-I. Org. Lett. 2002; 4: 2941
  • 96 Crimmins MT, Choy AL. J. Am. Chem. Soc. 1999; 121: 5653
  • 97 Burton JW, Clark JS, Derrer S, Stork TC, Bendall JG, Holmes AB. J. Am. Chem. Soc. 1997; 119: 7483
  • 98 Crimmins MT, Emmitte KA. Org. Lett. 1999; 1: 2029
  • 99 Adsool VA, Pansare SV. Org. Biomol. Chem. 2008; 6: 2011
  • 100 Bratz M, Bullock WH, Overman LE, Takemoto T. J. Am. Chem. Soc. 1995; 117: 5958
  • 101 Matsui R, Seto K, Sato Y, Suzuki T, Nakazaki A, Kobayashi S. Angew. Chem. Int. Ed. 2011; 50: 680
  • 102 Volchkov I, Lee D. J. Am. Chem. Soc. 2013; 135: 5324
  • 103 Crimmins MT, Brown BH. J. Am. Chem. Soc. 2004; 126: 10264
  • 104 Larrosa I, Da Silva MI, Gómez PM, Hannen P, Ko E, Lenger SR, Linke SR, White AJP, Wilton D, Barrett AGM. J. Am. Chem. Soc. 2006; 128: 14042
  • 105 Lv L, Shen B, Li Z. Angew. Chem. Int. Ed. 2014; 53: 4164
  • 106 Brown MK, Hoveyda AH. J. Am. Chem. Soc. 2008; 130: 12904
  • 107 Cai Z, Yongpruksa N, Harmata M. Org. Lett. 2012; 14: 1661
  • 108 Kusuma BR, Brandt GEL, Blagg SJ. Org. Lett. 2012; 14: 6242
  • 109 Kurata K, Taniguchi K, Shiraishi K, Hayama N, Tanaka I, Suzuki M. Chem. Lett. 1989; 267
  • 110 Becker J, Butt L, von Kiedrowski V, Mischler E, Quentin F, Hiersemann M. Org. Lett. 2013; 15: 5982
  • 111 Gallenkamp D, Fürstner A. J. Am. Chem. Soc. 2011; 133: 9232
  • 112 Micoine K, Fürstner A. J. Am. Chem. Soc. 2010; 132: 14064
  • 113 Bali AK, Sunnam SK, Prasad KR. Org. Lett. 2014; 16: 4001
  • 114 Toelle N, Weinstabl H, Gaich T, Mulzer J. Angew. Chem. Int. Ed. 2014; 53: 3859
  • 115 Yun SY, Hansen EC, Volchkov I, Cho EJ, Lo WY, Lee D. Angew. Chem. Int. Ed. 2010; 49: 4261
  • 116 Hayashi Y, Shoji M, Ishikawa H, Yamaguchi J, Tamaru T, Imai H, Nishigaya Y, Takabe K, Kakeya H, Osada H. Angew. Chem. Int. Ed. 2008; 47: 6657
  • 117 Evano G, Schaus JV, Panek JS. Org. Lett. 2004; 6: 525
  • 118 Del Valle DJ, Krische MJ. J. Am. Chem. Soc. 2013; 135: 10986
  • 119 Fujiwara K, Suzuki Y, Koseki N, Aki Y.-I, Kikuchi Y, Murata F, Yamamoto F, Kawamura M, Norikura T, Matsue H, Murai A, Katoono R, Kawai H, Suzuki T. Angew. Chem. Int. Ed. 2014; 53: 780
  • 120 Hara A, Morimoto R, Iwasaki Y, Saitoh T, Ishikawa Y, Nishiyama S. Angew. Chem. Int. Ed. 2012; 51: 9877
  • 121 Kobayashi J, Shimbo K, Sato M, Shiro M, Tsuda M. Org. Lett. 2000; 2: 2805
  • 122 Zuercher WJ, Hashimoto M, Grubbs RH. J. Am. Chem. Soc. 1996; 118: 6634
  • 123 Harrity JPA, Visser MS, Gleason JD, Hoveyda AH. J. Am. Chem. Soc. 1997; 119: 1488
  • 124 Stragies R, Blechert S. J. Am. Chem. Soc. 2000; 122: 9584
  • 125 Buschmann N, Rückert A, Blechert S. J. Org. Chem. 2002; 67: 4325
  • 126 Holub N, Neidhöfer J, Blechert S. Org. Lett. 2005; 7: 1227
  • 127 Böhrsch V, Neidhöfer J, Blechert S. Angew. Chem. Int. Ed. 2006; 45: 1302
  • 128 Böhrsch V, Blechert S. Chem. Commun. (Cambridge) 2006; 1968
  • 129 Stragies R, Blechert S. Synlett 1998; 169
  • 130 Wrobleski A, Sahasrabudhe K, Aubé J. J. Am. Chem. Soc. 2004; 126: 5475
  • 131 Henderson JA, Phillips AJ. Angew. Chem. Int. Ed. 2008; 47: 8499
  • 132 Pfeiffer MWB, Phillips AJ. J. Am. Chem. Soc. 2005; 127: 5334
  • 133 Miura Y, Hayashi N, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2012; 134: 11995
  • 134 Li J, Lee D. Chem. Sci. 2012; 3: 3296
  • 135 Takao K.-I, Nanamiya R, Fukushima Y, Namba A, Yoshida K, Tadano K.-I. Org. Lett. 2013; 15: 5582
  • 136 Han J.-C, Li F, Li C.-C. J. Am. Chem. Soc. 2014; 136: 13610
  • 137 Hansen EC, Lee D. Acc. Chem. Res. 2006; 39: 509
  • 138 Villar H, Frings M, Bolm C. Chem. Soc. Rev. 2007; 36: 55
  • 139 Ulman M, Grubbs RH. Organometallics 1998; 17: 2484
  • 140 Hoye TR, Donaldson SM, Vos TJ. Org. Lett. 1999; 1: 277
  • 141 Schramm MP, Reddy DS, Kozmin SA. Angew. Chem. Int. Ed. 2001; 40: 4274
  • 142 Lloyd-Jones GC, Margue RG, de Vries JG. Angew. Chem. Int. Ed. 2005; 44: 7442
  • 143 Sohn J.-H, Kim KH, Lee H.-Y, No ZS, Ihee H. J. Am. Chem. Soc. 2008; 130: 16506
  • 144 Kim KH, Ok T, Lee K, Lee H.-Y, Chang KT, Ihee H, Sohn J.-H. J. Am. Chem. Soc. 2010; 132: 12027
  • 145 Lee OS, Kim KH, Kim J, Kwon K, Ok T, Ihee H, Lee H.-Y, Sohn J.-H. J. Org. Chem. 2013; 78: 8242
  • 146 Lee Y.-J, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 10652
  • 147 Clavier H, Correa A, Escudero-Adán EC, Benet-Buchholz J, Cavallo L, Nolan SP. Chem.–Eur. J. 2009; 15: 10244
  • 148 Lippstreu JJ, Straub BF. J. Am. Chem. Soc. 2005; 127: 7444
  • 149 Nuñez-Zarur F, Solans-Monfort X, Rodríguez-Santiago L, Pleixats R, Sodupe M. Chem.–Eur. J. 2011; 17: 7506
  • 150 Zuercher WJ, Scholl M, Grubbs RH. J. Org. Chem. 1998; 63: 4291
  • 151 Huang J, Xiong H, Hsung RP, Rameshkumar C, Mulder JA, Grebe TP. Org. Lett. 2002; 4: 2417
  • 152 Choi T.-L, Grubbs RH. Chem. Commun. (Cambridge) 2001; 2648
  • 153 Timmer MSM, Ovaa H, Filippov DV, van der Marel GA, van Boom JH. Tetrahedron Lett. 2001; 42: 8231
  • 154 Wu C.-J, Madhushaw RJ, Liu R.-S. J. Org. Chem. 2003; 68: 7889
  • 155 Maifeld SV, Miller RL, Lee D. J. Am. Chem. Soc. 2004; 126: 12228
  • 156 Zhao Y, Hoveyda AH, Schrock RR. Org. Lett. 2011; 13: 784
  • 157 Betkekar VV, Panda S, Kaliappan KP. Org. Lett. 2012; 14: 198
  • 158 Miller RL, Maifeld SV, Lee D. Org. Lett. 2004; 6: 2773
  • 159 Matsuda T, Yamaguchi Y, Murakami M. Synlett 2008; 561
  • 160 Layton ME, Morales CA, Shair MD. J. Am. Chem. Soc. 2002; 124: 773
  • 161 Morales CA, Layton ME, Shair MD. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 12036
  • 162 Hansen EC, Lee D. J. Am. Chem. Soc. 2003; 125: 9582
  • 163 Hansen EC, Lee D. J. Am. Chem. Soc. 2004; 126: 15074
  • 164 Grimwood ME, Hansen HC. Tetrahedron 2009; 65: 8132
  • 165 Kim M, Miller RL, Lee D. J. Am. Chem. Soc. 2005; 127: 12818
  • 166 Yun SY, Kim M, Lee D, Wink DJ. J. Am. Chem. Soc. 2009; 131: 24
  • 167 Wang K.-P, Yun SY, Lee D. J. Am. Chem. Soc. 2009; 131: 15114
  • 168 van Otterlo W. AL, Ngidi EL, de Koning CB, Fernandes MA. Tetrahedron Lett. 2004; 45: 659
  • 169 Kinoshita A, Mori M. J. Org. Chem. 1996; 61: 8356
  • 170 Kinoshita A, Mori M. Heterocycles 1997; 46: 287
  • 171 Debleds O, Campagne J.-M. J. Am. Chem. Soc. 2008; 130: 1562
  • 172 Graham TJA, Gray EE, Burgess JM, Goess BC. J. Org. Chem. 2010; 75: 226
  • 173 Aggarwal VK, Astle CJ, Rogers-Evans M. Org. Lett. 2004; 6: 1469
  • 174 Brenneman JB, Martin SF. Org. Lett. 2004; 6: 1329
  • 175 Mori M, Tomita T, Kita Y, Kitamura T. Tetrahedron Lett. 2004; 45: 4397
  • 176 Reddy DS, Kozmin SA. J. Org. Chem. 2004; 69: 4860
  • 177 Gao X, Woo SK, Krische MJ. J. Am. Chem. Soc. 2013; 135: 4223
  • 178 Li J, Lee D. Chem.–Asian J. 2010; 5: 1298
  • 179 Honda T, Namiki H, Kaneda K, Mizutani H. Org. Lett. 2004; 6: 87
  • 180 Boyer F.-D, Hanna I, Ricard L. Org. Lett. 2004; 6: 1817
  • 181 Schubert M, Metz P. Angew. Chem. Int. Ed. 2011; 50: 2954
  • 182 Mukherjee S, Lee D. Org. Lett. 2009; 11: 2916
  • 183 Dineen TA, Roush WR. Org. Lett. 2004; 6: 2043
  • 184 Movassaghi M, Piizzi G, Siegel DS, Piersanti G. Angew. Chem. Int. Ed. 2006; 45: 5859
  • 185 Poulin J, Grise-Bard CM, Barriault L. Angew. Chem. Int. Ed. 2012; 51: 2111
  • 186 Betkekar VV, Sayyad AA, Kaliappan KP. Org. Lett. 2014; 16: 5540
  • 187 Molawi K, Delpont N, Echavarren AM. Angew. Chem. Int. Ed. 2010; 49: 3517
  • 188 Lee J, Parker KA. Org. Lett. 2012; 14: 2682
  • 189 Wei H, Qiao C, Liu G, Yang Z, Li C.-C. Angew. Chem. Int. Ed. 2013; 52: 620
  • 190 Kitamura T, Mori M. Org. Lett. 2001; 3: 1161
  • 191 Rückert A, Eisele D, Blechert S. Tetrahedron Lett. 2001; 42: 5245
  • 192 Mori M, Wakamatsu H, Tonogaki K, Fujita R, Kitamura T, Sato Y. J. Org. Chem. 2005; 70: 1066
  • 193 Zhu Z.-B, Shi M. Org. Lett. 2010; 12: 4462
  • 194 Kress S, Weckesser J, Schulz SR, Blechert S. Eur. J. Org. Chem. 2013; 1346
  • 195 Basso A, Banfi L, Riva R, Guanti G. Tetrahedron 2006; 62: 8830
  • 196 Groaz E, Banti D, North M. Tetrahedron Lett. 2007; 48: 1927
  • 197 Spandl RJ, Rudyk H, Spring DR. Chem. Commun. (Cambridge) 2008; 3001
  • 198 Kim M, Lee D. J. Am. Chem. Soc. 2005; 127: 18024
  • 199 Li J, Park S, Miller RL, Lee D. Org. Lett. 2009; 11: 571
  • 200 Wengrovius JH, Sancho J, Schrock RR. J. Am. Chem. Soc. 1981; 103: 3932
  • 201 Schrock RR. Polyhedron 1995; 14: 3177
  • 202 Fürstner A, Davies PW. Chem. Commun. (Cambridge) 2005; 2307
  • 203 Hérisson J.-L, Chauvin Y. Makromol. Chem. 1971; 141: 161
  • 204 Katz TJ, McGinnis J. J. Am. Chem. Soc. 1975; 97: 1592
  • 205 McCullough LG, Listemann ML, Schrock RR, Churchill MR, Ziller JW. J. Am. Chem. Soc. 1983; 105: 6729
  • 206 Zhu J, Jiu G, Lin Z. Organometallics 2006; 25: 1812
  • 207 Krouse SA, Schrock RR. Macromolecules 1989; 22: 2569
  • 208 Aguilera B, Wolf LB, Nieczypor P, Rutjes FPJT, Overkleeft HS, van Hest JCM, Schoemaker HE, Wang B, Mol JC, Fürstner A, Overhand M, van der Marel GA, van Boom JH. J. Org. Chem. 2001; 66: 3584
  • 209 Jsselstijn MI, Kaiser J, van Delft FL, Schoemaker HE, Rutjes FPJT. Amino Acids 2003; 24: 263
  • 210 IJsselstijn M, Aguilera B, van der Marel GA, van Boom JH, van Delft FL, Schoemaker HE, Overkleeft HS, Rutjes FPJT, Overhand M. Tetrahedron Lett. 2004; 45: 4379
  • 211 Ghalit N, Poot AJ, Fürstner A, Rijkers DTS, Liskamp RM. Org. Lett. 2005; 7: 2961
  • 212 Doyle D, Murphy PV. Carbohydr. Res. 2008; 343: 2535
  • 213 Bauer EB, Szafert S, Hampel F, Gladysz JA. Organometallics 2003; 22: 2184
  • 214 Bauer EB, Hampel F, Gladysz JA. Adv. Synth. Catal. 2004; 346: 812
  • 215 Lysenko S, Volbeda J, Jones PG, Tamm M. Angew. Chem. Int. Ed. 2012; 51: 6757
  • 216 Fürstner A, Seidel G. J. Organomet. Chem. 2000; 606: 75
  • 217 Fürstner A, Rumbo A. J. Org. Chem. 2000; 65: 2608
  • 218 Fürstner A, Grela K. Angew. Chem. Int. Ed. 2000; 39: 1234
  • 219 Fürstner A, Mathes C, Grela K. Chem. Commun. (Cambridge) 2001; 1057
  • 220 Vintonyak VV, Maier M. Angew. Chem. Int. Ed. 2007; 46: 5209
  • 221 Vintonyak VV, Calà M, Lay F, Kunze B, Sasse F, Maier M. Chem.–Eur. J. 2008; 14: 3709
  • 222 Fürstner A, Bindl M, Jean L. Angew. Chem. Int. Ed. 2007; 46: 9275
  • 223 Fouché M, Rooney L, Barrett AGM. J. Org. Chem. 2012; 77: 3060
  • 224 Hickmann V, Alcarazo M, Fürstner A. J. Am. Chem. Soc. 2010; 132: 11042
  • 225 Fürstner A, Larionov O, Flügge S. Angew. Chem. Int. Ed. 2007; 46: 5545
  • 226 Freudenberger JH, Schrock RR, Churchill MR, Rheingold AL, Ziller JW. Organometallics 1984; 3: 1563
  • 227 Bindl M, Stade R, Heilmann EK, Picot A, Goddard R, Fürstner A. J. Am. Chem. Soc. 2009; 131: 9468
  • 228 Kyle AF, Jakubec P, Cockfield DM, Cleator E, Skidmore J, Dixon DJ. Chem. Commun. (Cambridge) 2011; 47: 10037
  • 229 Fürstner A, Radkowski K. Chem. Commun. (Cambridge) 2002; 2182
  • 230 Lacombe F, Radkowski K, Seidel G, Fürstner A. Tetrahedron 2004; 60: 7315
  • 231 Heppekausen J, Stade R, Goddard R, Fürstner A. J. Am. Chem. Soc. 2010; 132: 11045
  • 232 Sundararaju B, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 14050
  • 233 Radkowski K, Sundararaju B, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 355
  • 234 Lehr K, Mariz R, Leseurre L, Gabor B, Fürstner A. Angew. Chem. Int. Ed. 2011; 50: 11373
  • 235 Micoine K, Persich P, Llaveria J, Lam M.-H, Maderna A, Loganzo F, Fürstner A. Chem.–Eur. J. 2013; 19: 7370
  • 236 Willwacher J, Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 4217
  • 237 Neuhaus CM, Liniger M, Stieger M, Altmann K.-H. Angew. Chem. Int. Ed. 2013; 52: 5866
  • 238 Willwacher J, Kausch-Busies N, Fürstner A. Angew. Chem. Int. Ed. 2012; 51: 12041
  • 239 Ungeheuer F, Fürstner A. Chem.–Eur. J. 2015; 21: 11387
  • 240 Zhang W, Moore JS. J. Am. Chem. Soc. 2005; 127: 11863
  • 241 Zhang W, Moore JS. Angew. Chem. Int. Ed. 2006; 45: 4416
  • 242 Ge P.-H, Fu W, Herrmann WA, Herdtweck E, Campana C, Adams RD, Bunz UHF. Angew. Chem. Int. Ed. 2000; 39: 3607
  • 243 Zhang W, Moore JS. J. Am. Chem. Soc. 2004; 126: 12796