2.4 1,3-Dipolar Cycloadditions Involving Carbonyl or Azomethine Ylides
Book
Editors: Gao, S.; Ma, S.
Title: Metal-Catalyzed Cyclization Reactions 2
Print ISBN: 9783131998118; Online ISBN: 9783132404823; Book DOI: 10.1055/b-004-129734
1st edition © 2016 Georg Thieme Verlag KG
Georg Thieme Verlag, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.
Type: Multivolume Edition
Abstract
Carbonyl ylides, which behave as active 1,3-dipole species, have found numerous applications in organic synthesis, especially in the formation of five-membered heterocycles. Among the versatile transformations of carbonyl ylides, 1,3-dipolar cycloadditions with π-bonds, including (3 + 2)-cycloaddition reactions with carbon–carbon π-bonds, aldehydes, and imines, are ubiquitous and important reactions. This chapter focuses on recent advances in these catalytic (3 + 2)-cycloaddition reactions and the examples presented emphasize the chemo-, diastereo-, and enantiocontrol that can be achieved. Also described are selected examples of cycloaddition reactions with azomethine ylides, which behave with similar reactivity to carbonyl ylides, to give the corresponding N-heterocycles. In addition, some selected applications of these (3 + 2)-cycloaddition reactions in natural product synthesis are highlighted.
Key words
(3 + 2) cycloaddition - carbonyl ylides - azomethine ylides - 1,3-dipoles - diazo compounds - chiral dirhodium carboxylates - heterocycles - five-membered rings - natural product synthesis - asymmetric catalysis- 3 Wang J, In Comprehensive Organometallic Chemistry III Crabtree RH, Mingos DMP. Elsevier Oxford 2007; Vol 11 159–163
- 6 Bentabed-Ababsa G, Hamza-Reguig S, Derdour A, Domingo LR, Sáez JA, Roisnel T, Dorcet V, Nassar E, Mongin F. Org. Biomol. Chem. 2012; 10: 8434
- 7 Elliott GI, Velcicky J, Ishikawa H, Li Y, Boger DL. Angew. Chem. 2006; 118: 636 Angew. Chem. Int. Ed. 2006; 45: 620
- 14 Tsutsui H, Shimada N, Abe T, Anada M, Nakajima M, Nakamura S, Nambu H, Hashimoto S. Adv. Synth. Catal. 2007; 349: 521
- 26 Krishnamurthi J, Nambu H, Takeda K, Anada M, Yamano A, Hashimoto S. Org. Biomol. Chem. 2013; 11: 5374
- 28 Suga H, Ishimoto D, Higuchi S, Ohtsuka M, Arikawa T, Tsuchida T, Kakehi A, Baba T. Org. Lett. 2007; 9: 4359
- 36 Torssell S, Kienle M, Somfai P. Angew. Chem. 2005; 117: 3156 Angew. Chem. Int. Ed. 2005; 44: 3096
- 47 Yan M, Jacobsen N, Hu W, Gronenberg LS, Doyle MP, Colyer JT, Bykowski D. Angew. Chem. 2004; 116: 6881 Angew. Chem. Int. Ed. 2004; 43: 6713
- 52 Geldenhuys WJ, Malan SF, Bloomquist JR, Marchand AP, Van der Schyf CJ. Med. Res. Rev. 2005; 25: 21
- 55 Shimada N, Hanari T, Kurosaki Y, Takeda K, Anada M, Nambu H, Shiro M, Hashimoto S. J. Org. Chem. 2010; 75: 6039