Snyder, S. A.: 2016 Science of Synthesis, 2015/4a: Applications of Domino Transformations in Organic Synthesis 1 DOI: 10.1055/sos-SD-219-00096
Applications of Domino Transformations in Organic Synthesis 1

1.4.1 Peroxy Radical Additions

More Information

Book

Editor: Snyder, S. A.

Authors: Adu-Ampratwum, D.; Anderson, E.; Armbrust, K. W.; Devery, J.; Douglas, J.; Doyle, M. P.; Engle, K. M.; Forsyth, C. J.; Gille, F.; Halkina, T.; Hu, X.; Jamison, T.; Kelley, E. H.; Kirschning, A.; Lee, D.; Maimone, T.; Merino, E.; Nevado Blazquez, C.; O'Connor, M. J.; Ohshima, T.; Parker, K.; Renata, H.; Salvador, A.; Schaumann, E.; Shenvi, R.; Shi, L.-L.; Sittihan, S.; Snyder, S. A.; Stephenson, C. R. J.; Tang, M.; Truong, P.; Tu, Y.-Q.; Wan, K.; Wang, S.-H.; Wolling, M.; Xu, X.; Yang, Z.

Title: Applications of Domino Transformations in Organic Synthesis 1

Print ISBN: 9783131731319; Online ISBN: 9783132402522; Book DOI: 10.1055/b-003-128286

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

In this chapter, radical addition reactions involving peroxy radical intermediates are reviewed. These transformations typically generate a carbon radical intermediate which then reacts with molecular oxygen forming a peroxy radical species. Following peroxy radical cyclization, various endoperoxide rings are constructed. Two major classes of reactions are discussed: (1) radical additions to alkenes and quenching with molecular oxygen, and (2) radical formation from the opening of cyclopropanes and incorporation of molecular oxygen. Various methods for radical initiation that are compatible with the presence of molecular oxygen are described.

 
  • 1 Spiteller G. Free Radical Biol. Med. 2006; 41: 362
  • 2 Liu D.-Z, Liu J.-K. Nat. Prod. Bioprospect. 2013; 3: 161
  • 3 Korshin EE, Bachi MD. Synthesis of Cyclic Peroxides, Pataiʼs Chemistry of Functional Groups (Online). Wiley New York 2009; pp 1–117
  • 4 Dussault P. Synlett 1995; 997
  • 5 Zabicky J, In The Chemistry of the Peroxide Group. Rappoport Z. Wiley; Chichester, UK 2006. Part 2, Vol.  2, pp  597–773.
  • 6 Shanley ES, In Organic Peroxides. Swern D. Wiley; New York 1970. Vol 3, p  341.
  • 7 Funk MO, Isaac R, Porter NA. J. Am. Chem. Soc. 1975; 97: 1281
  • 8 Porter NA, Funk MO, Gilmore D, Isaac R, Nixon J. J. Am. Chem. Soc. 1976; 98: 6000
  • 9 Tokuyasu T, Kunikawa S, Abe M, Masuyama A, Nojima M, Kim H.-S, Begum K, Wataya Y. J. Org. Chem. 2003; 68: 7361
  • 10 Bartlett PD, Benzing EP, Pincock RE. J. Am. Chem. Soc. 1960; 82: 1762
  • 11 Mendenhall GD. Tetrahedron Lett. 1983; 24: 451
  • 12 Porter NA, Zuraw PJ. J. Org. Chem. 1984; 49: 1345
  • 13 Spellmeyer DC, Houk KN. J. Org. Chem. 1987; 52: 959
  • 14 Beckwith ALJ, Schiesser CH. Tetrahedron 1985; 41: 3925
  • 15 Carless H. AJ, Batten RJ. Tetrahedron Lett. 1982; 23: 4735
  • 16 Bloodworth AJ, Curtis RJ, Mistry N. J. Chem. Soc., Chem. Commun. 1989; 954
  • 17 Cointeaux L, Berrien J.-F, Mayrargue J. Tetrahedron Lett. 2002; 43: 6275
  • 18 Roe AN, McPhail AT, Porter NA. J. Am. Chem. Soc. 1983; 105: 1199
  • 19 Porter NA, Roe AN, McPhail AT. J. Am. Chem. Soc. 1980; 102: 7574
  • 20 Haynes RK, Vonwiller SC. J. Chem. Soc., Chem. Commun. 1990; 1102
  • 21 Corey EJ, Wang Z. Tetrahedron Lett. 1994; 35: 539
  • 22 Fielder S, Rowan DD, Sherburn MS. Tetrahedron 1998; 54: 12907
  • 23 Boukouvalas J, Pouliot R, Fréchette Y. Tetrahedron Lett. 1995; 36: 4167
  • 24 Tokuyasu T, Kunikawa S, Masuyama A, Nojima M. Org. Lett. 2002; 4: 3595
  • 25 Isayama S, Mukaiyama T. Chem. Lett. 1989; 1071
  • 26 Mukaiyama T, Isayama S, Inoki S, Kato K, Yamada T, Takai T. Chem. Lett. 1989; 449
  • 27 Inoki S, Kato K, Takai T, Isayama S, Yamada T, Mukaiyama T. Chem. Lett. 1989; 515
  • 28 Magnus P, Payne AH, Waring MJ, Scott DA, Lynch V. Tetrahedron Lett. 2000; 41: 9725
  • 29 Magnus P, Waring MJ, Scott DA. Tetrahedron Lett. 2000; 41: 9731
  • 30 Magnus P, Scott DA, Fielding MR. Tetrahedron Lett. 2001; 42: 4127
  • 31 Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
  • 32 Okamoto T, Oka S. J. Org. Chem. 1984; 49: 1589
  • 33 Slack RD, Jacobine AM, Posner GH. Med. Chem. Commun. 2012; 3: 281
  • 34 OʼNeill PM, Barton VE, Ward SA. Molecules 2010; 15: 1705
  • 35 Posner GH, OʼNeill PM. Acc. Chem. Res. 2004; 37: 397
  • 36 Waser J, Carreira EM. Angew. Chem. 2004; 116: 4191 Angew. Chem. Int. Ed. 2004; 43: 4099
  • 37 Iwasaki K, Wan KK, Oppedisano A, Crossley SWM, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 1300
  • 38 King SM, Ma X, Herzon SB. J. Am. Chem. Soc. 2014; 136: 6884
  • 39 Hu X, Maimone TJ. J. Am. Chem. Soc. 2014; 136: 5287
  • 40 Posner T. Ber. Dtsch. Chem. Ges. 1905; 38: 646
  • 41 Walling C, Helmreich W. J. Am. Chem. Soc. 1959; 81: 1144
  • 42 Kharasch MS, Nudenberg W, Mantell GJ. J. Org. Chem. 1951; 16: 524
  • 43 Beckwith ALJ, Wagner RD. J. Am. Chem. Soc. 1979; 101: 7099
  • 44 Szpilman AM, Korshin EE, Rozenberg H, Bachi MD. J. Org. Chem. 2005; 70: 3618
  • 45 Korshin EE, Hoos R, Szpilman AM, Konstantinovski L, Posner GH, Bachi MD. Tetrahedron 2002; 58: 2449
  • 46 Beckwith ALJ, Wagner RD. J. Chem. Soc., Chem. Commun. 1980; 485
  • 47 Barker PJ, Beckwith ALJ, Fung Y. Tetrahedron Lett. 1983; 24: 97
  • 48 Feldman KS, Simpson RE, Parvez M. J. Am. Chem. Soc. 1986; 108: 1328
  • 49 Feldman KS, Simpson RE. J. Am. Chem. Soc. 1989; 111: 4878
  • 50 Feldman KS. Synlett 1995; 217
  • 51 Feldman KS, Kraebel CM. J. Org. Chem. 1992; 57: 4574
  • 52 Yoshida J.-I, Nakatani S, Sakaguchi K, Isoe S. J. Org. Chem. 1989; 54: 3383
  • 53 Snider BB. Chem. Rev. 1996; 96: 339
  • 54 Mondal M, Bora U. RSC Adv. 2013; 3: 18716
  • 55 Tategami S.-I, Yamada T, Nishino H, Korp JD, Kurosawa K. Tetrahedron Lett. 1990; 31: 6371
  • 56 Kumabe R, Nishino H. Tetrahedron Lett. 2004; 45: 703
  • 57 Kumabe R, Nishino H, Yasutake M, Nguyen V.-H, Kurosawa K. Tetrahedron Lett. 2001; 42: 69
  • 58 Yamada T, Iwahara Y, Nishino H, Kurosawa K. J. Chem. Soc., Perkin Trans. 1 1993; 609
  • 59 Kajikawa S, Nishino H, Kurosawa K. Heterocycles 2001; 54: 171
  • 60 Majetich G, Zou G, Hu S. Org. Lett. 2013; 15: 4924
  • 61 Gibson DH, DePuy CH. Tetrahedron Lett. 1969; 10: 2203
  • 62 Wimalasena K, Wickman HB, Mahindaratne MPD. Eur. J. Org. Chem. 2001; 3811
  • 63 Madelaine C, Six Y, Buriez O. Angew. Chem. 2007; 119: 8192 Angew. Chem. Int. Ed. 2007; 46: 8046
  • 64 Creary X, Wolf A, Miller K. Org. Lett. 1999; 1: 1615
  • 65 Mizuno K, Kamiyama N, Otsuji Y. Chem. Lett. 1983; 477
  • 66 Mizuno K, Kamiyama N, Ichinose N, Otsuji Y. Tetrahedron 1985; 41: 2207
  • 67 Shim SC, Song JS. J. Org. Chem. 1986; 51: 2817
  • 68 Gollnick K, Xiao X.-L, Paulmann U. J. Org. Chem. 1990; 55: 5945
  • 69 Tamai T, Mizuno K, Hashida I, Otsuji Y. J. Org. Chem. 1992; 57: 5338
  • 70 Haynes RK, Probert MKS, Wilmot ID. Aust. J. Chem. 1978; 31: 1737
  • 71 Gollnick K, Schnatterer A. Tetrahedron Lett. 1984; 25: 185
  • 72 Mattes SL, Farid S. J. Am. Chem. Soc. 1986; 108: 7356
  • 73 Kojima M, Ishida A, Takamuku S. Chem. Lett. 1993; 979
  • 74 Gollnick K, Schnatterer A, Utschick G. J. Org. Chem. 1993; 58: 6049
  • 75 Miyashi T, Konno A, Takahashi Y. J. Am. Chem. Soc. 1988; 110: 3676
  • 76 Mizuno K, Tamai T, Hashida I, Otsuji Y, Kuriyama Y, Tokumaru K. J. Org. Chem. 1994; 59: 7329
  • 77 Griesbeck AG, Sadlek O, Polborn K. Liebigs Ann. 1996; 545
  • 78 Kamata M, Ohta M, Komatsu K.-I, Kim H.-S, Wataya Y. Tetrahedron Lett. 2002; 43: 2063
  • 79 Miyashi T, Ikeda H, Takahashi Y. Acc. Chem. Res. 1999; 32: 815
  • 80 Gesmundo NJ, Nicewicz DA. Beilstein J. Org. Chem. 2014; 10: 1272
  • 81 Parrish JD, Ischay MA, Lu Z, Guo S, Peters NR, Yoon TP. Org. Lett. 2012; 14: 1640